首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
哺乳动物昼夜节律组构中的下丘脑视交叉上核和松果腺   总被引:1,自引:0,他引:1  
Zhou XJ  Yu GD  Yin QZ 《生理科学进展》2001,32(2):116-120
哺乳动物下丘脑视交叉上核(SCN)是昼夜节律最主要的起搏器,控制着机体的生理和行为的节律。它具有自身内在的节律性,同时也受光照周期信号和一些内源性化学物质的调节。检查腺分泌裉黑素(MEL)受SCN的调控,MEL通过作用于SCN上高亲和性MEL受体,启动第二、第三信使系统,调整SCN的昼夜节律活动。这种调整具有时间敏感性。  相似文献   

2.
Appropriate timing of various seasonal processes is crucial to the survival and reproductive success of animals living in temperate regions. When seasonally breeding animals are subjected to annual changes in day length, dramatic changes in neuroendocrine-gonadal activity take place. However, the molecular mechanism underlying the photoperiodic response of gonads remains unknown for all living organisms. It is well known that a circadian clock is somehow involved in the regulation of photoperiodism. Recently, rhythmic expression of circadian clock genes was observed in the mediobasal hypothalamus (MBH) of Japanese quail. The MBH is believed to be the center for photoperiodism. In addition, long-day-induced hormone conversion of the prohormone thyroxine (T(4)) to the bioactive triiodothyronine (T(3)) by deiodinase in the MBH has been proven to be important to the photoperiodic response of the gonads. Although the regulating mechanism for the photoperiodic response of gonads in birds and mammals has long been considered to be quite different, the long-day-induced expression of the deiodinase gene in the hamster hypothalamus suggests the existence of a conserved regulatory mechanism in avian and mammalian photoperiodism.  相似文献   

3.
4.
松果体昼夜节律生物钟分子机制的研究进展   总被引:3,自引:0,他引:3  
Wang GQ  Tong J 《生理科学进展》2004,35(3):210-214
在各种非哺乳类脊椎动物中 ,松果体起着中枢昼夜节律振荡器的作用。近来 ,在鸟类松果体中相继发现了几种钟基因 ,如Per、Cry、Clock和Bmal等 ,其表达的时间变化规律与哺乳类视交叉上核 (SCN)的非常相似。钟的振荡由其自身调控反馈环路的转录和翻译组成 ,鸟类松果体和哺乳类SCN似乎具有共同的钟振荡基本分子构架 ;若干钟基因产物作为正向或负向调节子影响钟的振荡 ;昼夜性的控时机制同时也需要翻译后事件的参与。这些过程对钟振荡器的稳定性和 /或钟导引的光输入通路有着重要的调控作用  相似文献   

5.
In temperate zones, the reproductive physiology of most vertebrates is controlled by changes in photoperiod. Mechanisms for the regulation of photoperiodic gonadal responses are known to differ between mammals and birds: in mammals, melatonin is the photoperiodic signal messenger, whereas in birds, photoperiodic information is received by deep brain photoreceptors. Recently, the molecular mechanism of photoperiodism has been revealed by studies on Japanese quail, which exhibit a most remarkable responsiveness to photoperiod among vertebrates, and molecular cascades involved in photoperiodism have been elucidated. Long-day stimulus induces expression of the β-subunit of thyroid stimulating hormone (TSH-β) in the pars tuberalis (PT) of the pituitary gland, and TSH derived from the PT regulates reciprocal switching of genes encoding types 2 and 3 deiodinases (Dio2 and Dio3, respectively) in the mediobasal hypothalamus (MBH) by retrograde action. Dio2 locally converts prohormone thyroxine (T(4)) to bioactive triiodothyronine (T(3)) in the MBH, which subsequently stimulates the gonadal axis. These events have been confirmed to occur in mammals with seasonal breeding, such as hamsters and sheep, suggesting that similar mechanisms are involved among various vertebrates. In addition, nonphotoperiodic mice also appeared to possess the same molecular mechanisms at the hypothalamo-hypophysial level. It has been noted that melatonin regulates the above-mentioned key genes (Dio2, Dio3, and TSH-β) in mammals, while photoperiod directly regulates these genes in birds. Thus, the input pathway of photoperiod is different between mammals and birds (i.e., melatonin versus light); however, the essential mechanisms are conserved among these vertebrates.  相似文献   

6.
Circadian clock system in the pineal gland   总被引:8,自引:0,他引:8  
  相似文献   

7.
For over 70 years, researchers have debated whether the ability to use day length as a cue for the timing of seasonal events (photoperiodism) is related to the endogenous circadian clock that regulates the timing of daily events. Models of photoperiodism include two components: (1) a photoperiodic timer that measures the length of the day, and (2) a photoperiodic counter that elicits the downstream photoperiodic response after a threshold number of days has been counted. Herein, we show that there is no geographical pattern of genetic association between the expression of the circadian clock and the photoperiodic timer or counter. We conclude that the photoperiodic timer and counter have evolved independently of the circadian clock in the pitcher-plant mosquito Wyeomyia smithii and hence, the evolutionary modification of photoperiodism throughout the range of W. smithii has not been causally mediated by a corresponding evolution of the circadian clock.
Kevin J. EmersonEmail:
  相似文献   

8.
In many seasonally breeding rodents, reproduction and metabolism are activated by long summer days (LD) and inhibited by short winter days (SD). After several months of SD, animals become refractory to this inhibitory photoperiod and spontaneously revert to LD-like physiology. The suprachiasmatic nuclei (SCN) house the primary circadian oscillator in mammals. Seasonal changes in photic input to this structure control many annual physiological rhythms via SCN-regulated pineal melatonin secretion, which provides an internal endocrine signal representing photoperiod. We compared LD- and SD-housed animals and show that the waveform of SCN expression for three circadian clock genes (Per1, Per2, and Cry2) is modified by photoperiod. In SD-refractory (SD-R) animals, SCN and melatonin rhythms remain locked to SD, reflecting ambient photoperiod, despite LD-like physiology. In peripheral oscillators, Per1 and Dbp rhythms are also modified by photoperiod but, in contrast to the SCN, revert to LD-like, high-amplitude rhythms in SD-R animals. Our data suggest that circadian oscillators in peripheral organs participate in photoperiodic time measurement in seasonal mammals; however, circadian oscillators operate differently in the SCN. The clear dissociation between SCN and peripheral oscillators in refractory animals implicates intermediate factor(s), not directly driven by the SCN or melatonin, in entrainment of peripheral clocks.  相似文献   

9.
Behavioral and physiological circadian rhythms are controlled by endogenous oscillators in animals. Voluntary wheel-running in rodents is thought to be an appropriate model of aerobic exercise in humans. We evaluated the effects of chronic voluntary exercise on the circadian system by analyzing temporal profiles of feeding, core body temperature, plasma hormone concentrations and peripheral expression of clock and clock-controlled genes in mice housed under sedentary (SED) conditions or given free access to a running-wheel (RW) for four weeks. Voluntary wheel-running activity advanced the circadian phases of increases in body temperature, food intake and corticosterone secretion in the mice. The circadian expression of clock and clock-controlled genes was tissue- and gene-specifically affected in the RW mice. The temporal expression of E-box-dependent circadian clock genes such as Per1, Per2, Nr1d1 and Dbp were slightly, but significantly phase-advanced in the liver and white adipose tissue, but not in brown adipose tissue and skeletal muscle. Peak levels of Per1, Per2 and Nr1d1 expression were significantly increased in the skeletal muscle of RW mice. The circadian phase and levels of hepatic mRNA expression of the clock-controlled genes that are involved in cholesterol and fatty acid metabolism significantly differed between SED and RW mice. These findings indicated that endogenous clock-governed voluntary wheel-running activity provides feedback to the central circadian clock that systemically governs behavioral and physiological rhythms.  相似文献   

10.
The molecular circadian clock mechanism is highly conserved between mammalian and avian species. Avian circadian timing is regulated at multiple oscillatory sites, including the retina, pineal, and hypothalamic suprachiasmatic nucleus (SCN). Based on the authors’ previous studies on the rat ovary, it was hypothesized that ovarian clock timing is regulated by the luteinizing hormone (LH) surge. The authors used the chicken as a model to test this hypothesis, because the timing of the endogenous LH surge is accurately predicted from the time of oviposition. Therefore, tissues can be removed before and after the LH surge, allowing one to determine the effect of LH on specific clock genes. The authors first examined the 24-h expression patterns of the avian circadian clock genes of Bmal1, Cry1, and Per2 in primary oscillatory tissues (hypothalamus and pineal) as well as peripheral tissues (liver and ovary). Second, the authors determined changes in clock gene expression after the endogenous LH surge. Clock genes were rhythmically expressed in each tissue, but LH influenced expression of these clock genes only in the ovary. The data suggest that expression of ovarian circadian clock genes may be influenced by the LH surge in vivo and directly by LH in cultured granulosa cells. LH induced rhythmic expression of Per1 and Bmal1 in arrhythmic, cultured granulosa cells. Furthermore, LH altered the phase and amplitude of clock gene rhythms in serum-shocked granulosa cells. Thus, the LH surge may be a mechanistic link for communicating circadian timing information from the central pacemaker to the ovary. (Author correspondence: stischkau@siumed.edu)  相似文献   

11.
To explain photoperiodic induction of diapause in the spider mite Tetranychus urticae a new theoretical model was developed which took into account both the hourglass and rhythmic elements shown to be present in the photoperiodic reaction of these mites. It is emphasized that photoperiodic induction is the result of time measurement as well as the summation and integration of a number of successive photoperiodic cycles: the model, therefore, consists of separate ‘clock’ and ‘counter’ mechanisms. In current views involvement of the circadian system in photoperiodism is interpreted in terms of the hypothesis that the photoperiodic clock itself is based on one or more circadian oscillators. Here a different approach has been chosen as regards the role of the circadian system in photoperiodism: the possibility, previously put forward by other authors, that some aspect of the photoperiodic induction mechanism other than the clock is controlled by the circadian system was investigated by assuming a circadian influence on the photoperiodic counter mechanism. The derivation of this ‘hourglass timer oscillator counter’ model of photoperiodic induction in T. urticae is described and its operation demonstrated on the basis of a number of diel and nondiel photoperiods, with and without light interruptions.  相似文献   

12.
13.
14.
This review examines possible role(s) of circadian ‘clock’ genes in insect photoperiodism against a background of many decades of formal experimentation and model building. Since ovarian diapause in the genetic model organism Drosophila melanogaster has proved to be weak and variable, recent attention has been directed to species with more robust photoperiodic responses. However, no obvious consensus on the problem of time measurement in insect photoperiodism has yet to emerge and a variety of mechanisms are indicated. In some species, expression patterns of clock genes and formal experiments based on the canonical properties of the circadian system have suggested that a damped oscillator version of Pittendrigh's external coincidence model is appropriate to explain the measurement of seasonal changes in night length. In other species extreme dampening of constituent oscillators may give rise to apparently hourglass-like photoperiodic responses, and in still others there is evidence for dual oscillator (dawn and dusk) photoperiodic mechanisms of the internal coincidence type. Although the exact role of circadian rhythmicity and of clock genes in photoperiodism is yet to be settled, Bünning's general hypothesis (Bünning, 1936) remains the most persuasive unifying principle. Observed differences between photoperiodic clocks may be reflections of underlying differences in the clock genes in their circadian feedback loops.  相似文献   

15.
In most organisms living in temperate zones, reproduction is under photoperiodic control. Although photoperiodic time measurement has been studied in organisms ranging from plants to vertebrates, the underlying molecular mechanism is not well understood. The Japanese quail (Coturnix japonica) represents an excellent model to study this problem because of the rapid and dramatic photoperiodic response of its hypothalamic‐pituitary‐gonadal axis. Recent investigations of Japanese quail show that long‐day‐induced type 2 deiodinase (Dio2) expression in the mediobasal hypothalamus (MBH) plays an important role in the photoperiodic gonadal regulation by catalyzing the conversion of the prohormone thyroxine (T4) to bioactive 3,5,3′‐triiodothyronine (T3). The T3 content in the MBH is approximately 10‐fold higher under long than short days and conditions, and the intracerebroventricular infusion of T3 under short days and conditions mimics the photoperiodic gonadal response. While Dio2 generates active T3 from T4 by outer ring deiodination, type 3 deiodinase (Dio3) catalyzes the conversion of both T3 and T4 into inactive forms by inner ring deiodination. In contrast to Dio2 expression, Dio3 expression in the MBH is suppressed under the long‐day condition. Photoperiodic changes in the expression of both genes during the photoinduction process occur before the changes in the level of luteinizing hormone (LH) secretion, suggesting that the reciprocal changes in Dio2 and Dio3 expression act as gene switches of the photoperiodic molecular cascade to trigger induction of LH secretion.  相似文献   

16.
The suprachiasmatic nucleus (SCN) regulates a wide range of daily behaviors and has been described as the master circadian pacemaker. The role of daily rhythmicity in other tissues, however, is unknown. We hypothesized that circadian changes in olfactory discrimination depend on a genetic circadian oscillator outside the SCN. We developed an automated assay to monitor olfactory discrimination in individual mice throughout the day. We found olfactory sensitivity increased approximately 6-fold from a minimum during the day to a peak in the early night. This circadian rhythm was maintained in SCN-lesioned mice and mice deficient for the Npas2 gene but was lost in mice lacking Bmal1 or both Per1 and Per2 genes. We conclude that daily rhythms in olfactory sensitivity depend on the expression of canonical clock genes. Olfaction is, thus, the first circadian behavior that is not based on locomotor activity and does not require the SCN.  相似文献   

17.
The circadian clock as a molecular calendar   总被引:3,自引:0,他引:3  
There are two dominant environmental oscillators shaping the living conditions of our world: the day-night cycle and the succession of the seasons. Organisms have adapted to these by evolving internal clocks to anticipate these variations. An orchestra of finely tuned peripheral clocks slaved to the master pacemaker of the suprachiasmatic nuclei (SCN) synchronizes the body to the daily 24h cycle. However, this circadian clockwork closely interacts with the seasonal time-teller.

Recent experiments indeed show that photoperiod—the dominant Zeitgeber of the circannual clock—might be deciphered by the organism using the tools of the circadian clock itself. From the SCN, the photoperiodic signal is transferred to the pineal where it is decoded as a varying secretion of melatonin.

Different models have been proposed to explain the mechanism by which the circadian clock measures day-length. Recent work using mutant mice suggests a set of two molecular oscillators tracking dusk and dawn, respectively, thereby translating day-length to the body. However, not every aspect of photoperiodism is covered by this theory and major adjustments will need to be made to establish a widely acceptable uniform model of circadian/circannual timekeeping.  相似文献   

18.
Circadian rhythms in physiology and behavior are known to be influenced by the estrous cycle in female rodents. The clock genes responsible for the generation of circadian oscillations are widely expressed both within the central nervous system and peripheral tissues, including those that comprise the reproductive system. To address whether the estrous cycle affects rhythms of clock gene expression in peripheral tissues, we first examined rhythms of clock gene expression (Per1, Per2, Bmal1) in reproductive (uterus, ovary) and non-reproductive (liver) tissues of cycling rats using quantitative real-time PCR (in vivo) and luminescent recording methods to measure circadian rhythms of PER2 expression in tissue explant cultures from cycling PER2::LUCIFERASE (PER2::LUC) knockin mice (ex vivo). We found significant estrous variations of clock gene expression in all three tissues in vivo, and in the uterus ex vivo. We also found that exogenous application of estrogen and progesterone altered rhythms of PER2::LUC expression in the uterus. In addition, we measured the effects of ovarian steroids on clock gene expression in a human breast cancer cell line (MCF-7 cells) as a model for endocrine cells that contain both the steroid hormone receptors and clock genes. We found that progesterone, but not estrogen, acutely up-regulated Per1, Per2, and Bmal1 expression in MCF-7 cells. Together, our findings demonstrate that the timing of the circadian clock in reproductive tissues is influenced by the estrous cycle and suggest that fluctuating steroid hormone levels may be responsible, in part, through direct effects on the timing of clock gene expression.  相似文献   

19.
The mammalian circadian system is composed of multiple central and peripheral clocks that are temporally coordinated to synchronize physiology and behavior with environmental cycles. Mammals have three homologs of the circadian Period gene (Per1, 2, 3). While numerous studies have demonstrated that Per1 and Per2 are necessary for molecular timekeeping and light responsiveness in the master circadian clock in the suprachiasmatic nuclei (SCN), the function of Per3 has been elusive. In the current study, we investigated the role of Per3 in circadian timekeeping in central and peripheral oscillators by analyzing PER2::LUCIFERASE expression in tissues explanted from C57BL/6J wild-type and Per3−/− mice. We observed shortening of the periods in some tissues from Per3−/− mice compared to wild-types. Importantly, the periods were not altered in other tissues, including the SCN, in Per3−/− mice. We also found that Per3-dependent shortening of endogenous periods resulted in advanced phases of those tissues, demonstrating that the in vitro phenotype is also present in vivo. Our data demonstrate that Per3 is important for endogenous timekeeping in specific tissues and those tissue-specific changes in endogenous periods result in internal misalignment of circadian clocks in Per3−/− mice. Taken together, our studies demonstrate that Per3 is a key player in the mammalian circadian system.  相似文献   

20.
The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master–slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum, as revealed by immunohistochemistry. These findings give reason to further pursue the physiological significance of circadian oscillators in the mouse neocortex and cerebellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号