首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of conformational change in substrate binding, catalysis and product release is reviewed for 11 enzymes, for which crystal structures are available for the apo, substrate- and product-bound states. The extent of global conformational changes is measured, and the movements of the functional regions involved in catalysis and ligand binding are compared to the rest of the structure. We find that most of these enzymes undergo relatively small amounts of conformational change and particularly small changes in catalytic residue geometry, usually less than 1 A. In some enzymes there is significant movement of the binding residues, usually on surface loops.  相似文献   

2.
This work investigates statistical prevalence and overall physical origins of changes in charge states of receptor proteins upon ligand binding. These changes are explored as a function of the ligand type (small molecule, protein, and nucleic acid), and distance from the binding region. Standard continuum solvent methodology is used to compute, on an equal footing, pK changes upon ligand binding for a total of 5899 ionizable residues in 20 protein-protein, 20 protein-small molecule, and 20 protein-nucleic acid high-resolution complexes. The size of the data set combined with an extensive error and sensitivity analysis allows us to make statistically justified and conservative conclusions: in 60% of all protein-small molecule, 90% of all protein-protein, and 85% of all protein-nucleic acid complexes there exists at least one ionizable residue that changes its charge state upon ligand binding at physiological conditions (pH = 6.5). Considering the most biologically relevant pH range of 4-8, the number of ionizable residues that experience substantial pK changes (ΔpK > 1.0) due to ligand binding is appreciable: on average, 6% of all ionizable residues in protein-small molecule complexes, 9% in protein-protein, and 12% in protein-nucleic acid complexes experience a substantial pK change upon ligand binding. These changes are safely above the statistical false-positive noise level. Most of the changes occur in the immediate binding interface region, where approximately one out of five ionizable residues experiences substantial pK change regardless of the ligand type. However, the physical origins of the change differ between the types: in protein-nucleic acid complexes, the pK values of interface residues are predominantly affected by electrostatic effects, whereas in protein-protein and protein-small molecule complexes, structural changes due to the induced-fit effect play an equally important role. In protein-protein and protein-nucleic acid complexes, there is a statistically significant number of substantial pK perturbations, mostly due to the induced-fit structural changes, in regions far from the binding interface.  相似文献   

3.
Rat cellular retinol binding protein (CRBP II) is a 134-amino acid intracellular protein synthesized in the polarized absorptive cells of the intestine. We have previously used 19F nuclear magnetic resonance (NMR) spectroscopy to survey the structural effects of ligand binding on the apoprotein. For these studies, all 4 Trp residues of rat CRBP II were efficiently labeled with 6-fluorotryptophan (6-F-Trp) by inducing its expression in a tryptophan auxotroph of Escherichia coli. Resonances corresponding to 2 of its Trp residues underwent large downfield shifts upon binding of all-trans-retinol and retinal, while resonances corresponding to the other 2 Trp residues underwent only minor perturbations in chemical shifts. To identify which Trp residues undergo changes in their environment upon ligand binding, we have constructed four CRBP II mutants where Trp9, Trp89, Trp107, or Trp110 have been replaced by another hydrophobic amino acid. By comparing the 19F NMR spectrum of each 6-F-Trp-labeled mutant with that of wild type 6-F-Trp CRBP II, we demonstrate that the 19F resonance corresponding to Trp107 undergoes the largest change in chemical shift upon ligand binding (2.0 ppm downfield). This is consistent with the position of this residue predicted from molecular modeling studies. The 19F resonance corresponding to Trp9 also undergoes a downfield change in chemical shift of 0.5 ppm associated with retinol binding even though it is predicted to be removed from the ligand binding site. By contrast, the resonances assigned to Trp89 and Trp110 undergo only minor perturbations in chemical shifts. These results have allowed us to identify residue-specific probes for evaluating the interactions of all-trans-retinol (and other retinoids) with this intracellular binding protein.  相似文献   

4.
Proteins are dynamic molecules and often undergo conformational change upon ligand binding. It is widely accepted that flexible loop regions have a critical functional role in enzymes. Lack of consideration of binding site flexibility has led to failures in predicting protein functions and in successfully docking ligands with protein receptors. Here we address the question: which sequence and structural features distinguish the structurally flexible and rigid binding sites? We analyze high-resolution crystal structures of ligand bound (holo) and free (apo) forms of 41 proteins where no conformational change takes place upon ligand binding, 35 examples with moderate conformational change, and 22 cases where a large conformational change has been observed. We find that the number of residue-residue contacts observed per-residue (contact density) does not distinguish flexible and rigid binding sites, suggesting a role for specific interactions and amino acids in modulating the conformational changes. Examination of hydrogen bonding and hydrophobic interactions reveals that cases that do not undergo conformational change have high polar interactions constituting the binding pockets. Intriguingly, the large, aromatic amino acid tryptophan has a high propensity to occur at the binding sites of examples where a large conformational change has been noted. Further, in large conformational change examples, hydrophobic-hydrophobic, aromatic-aromatic, and hydrophobic-polar residue pair interactions are dominant. Further analysis of the Ramachandran dihedral angles (phi, psi) reveals that the residues adopting disallowed conformations are found in both rigid and flexible cases. More importantly, the binding site residues adopting disallowed conformations clustered narrowly into two specific regions of the L-Ala Ramachandran map. Examination of the dihedral angles changes upon ligand binding shows that the magnitude of phi, psi changes are in general minimal, although some large changes particularly between right-handed alpha-helical and extended conformations are seen. Our work further provides an account of conformational changes in the dihedral angles space. The findings reported here are expected to assist in providing a framework for predicting protein-ligand complexes and for template-based prediction of protein function.  相似文献   

5.
A combined molecular dynamics simulation and multiple ligand docking approach is applied to study the roles of the anionic subsite residues (W86, E202, Y337) in the binding of acetylcholine (ACh) to acetylcholinesterase (AChE). We find that E202 stabilizes docking of ACh via electrostatic interactions. However, we find no significant electrostatic contribution from the aromatic residues. Docking energies of ACh to mutant AChE show a more pronounced effect because of size/shape complementarity. Mutating to smaller residues results in poorer binding, both in terms of docking energy and statistical docking probability. Besides separating out electrostatics by turning off the partial charges from each residue and comparing it with the native, the mutations in this study are W86F, W86A, E202D, E202Q, E202A, Y337F, and Y337A. We also find that all perturbations result in a significant reduction in binding of extended ACh in the catalytically productive orientation. This effect is primarily caused by a small shift in preferred position of the quaternary tail.  相似文献   

6.
The human cytokine interleukin-1beta (IL-1beta) interacts with the interleukin type I receptor using two large docking surfaces designated A and B. Crystallographic studies reveal that a single histidine residue (His30) in IL-1beta makes critical electrostatic interactions at the receptor/ligand interface. To study the function of this residue at site A, four mutant forms of IL-1beta (H30A, H30D, H30F and H30R) were investigated. The mutation that introduces charge repulsion at His30 destabilizes the protein, but paradoxically causes the least effect on receptor binding (H30D). Mutations that enhance hydrophobic or electrostatic interactions have little effect on protein stability yet markedly impair receptor binding (H30F, H30R). All mutations can transmit effects from site A to site B, as evidenced by changes in the binding of a single-chain antibody highly specific for site B. Dihedral scalar coupling constants for the wild-type IL-1beta and the four His mutant proteins showed changes in backbone angles in residues located around site B, some approximately 30 angstroms away from His30 in site A. A comparison of native solvent exchange in wild-type and mutated IL-1beta shows transmission of local destabilization along the hydrogen bond network of the beta-sheet. Taken together, the data indicate that a single residue in site A of IL-1beta can impact stability and function through perturbations in both local and long-range contacts.  相似文献   

7.
Chakraborty S 《PloS one》2012,7(6):e39577
The pathways of proton abstraction (PA), a key aspect of most catalytic reactions, is often controversial and highly debated. Ultrahigh-resolution diffraction studies, molecular dynamics, quantum mechanics and molecular mechanic simulations are often adopted to gain insights in the PA mechanisms in enzymes. These methods require expertise and effort to setup and can be computationally intensive. We present a push button methodology--Proton abstraction Simulation (PRISM)--to enumerate the possible pathways of PA in a protein with known 3D structure based on the spatial and electrostatic properties of residues in the proximity of a given nucleophilic residue. Proton movements are evaluated in the vicinity of this nucleophilic residue based on distances, potential differences, spatial channels and characteristics of the individual residues (polarity, acidic, basic, etc). Modulating these parameters eliminates their empirical nature and also might reveal pathways that originate from conformational changes. We have validated our method using serine proteases and concurred with the dichotomy in PA in Class A β-lactamases, both of which are hydrolases. The PA mechanism in a transferase has also been corroborated. The source code is made available at www.sanchak.com/prism.  相似文献   

8.
Ataie NJ  Hoang QQ  Zahniser MP  Tu Y  Milne A  Petsko GA  Ringe D 《Biochemistry》2008,47(29):7673-7683
The chemical properties of zinc make it an ideal metal to study the role of coordination strain in enzymatic rate enhancement. The zinc ion and the protein residues that are bound directly to the zinc ion represent a functional charge/dipole complex, and polarization of this complex, which translates to coordination distortion, may tune electrophilicity, and hence, reactivity. Conserved protein residues outside of the charge/dipole complex, such as second-shell residues, may play a role in supporting the electronic strain produced as a consequence of functional polarization. To test the correlation between charge/dipole polarity and ligand binding affinity, structure-function studies were carried out on the dizinc aminopeptidase from Vibrio proteolyticus. Alanine substitutions of S228 and M180 resulted in catalytically diminished enzymes whose crystal structures show very little change in the positions of the metal ions and the protein residues. However, more detailed inspections of the crystal structures show small positional changes that account for differences in the zinc ion coordination geometry. Measurements of the binding affinity of leucine phosphonic acid, a transition state analogue, and leucine, a product, show a correlation between coordination geometry and ligand binding affinity. These results suggest that the coordination number and polarity may tune the electrophilicity of zinc. This may have provided the evolving enzyme with the ability to discriminate between reaction coordinate species.  相似文献   

9.
Electrostatic interaction is a major driving force in the binding of proteins to highly acidic glycosaminoglycan, such as heparin. Although NMR backbone chemical shifts have generally been used to identify the heparin-binding site on a protein, however, there is no correlation between the binding free energies and the perturbed backbone chemical shifts for individual residues. The binding event occurs at the end of a side chain of basic residue, and does not require causing significant alterations in the backbone environment at a distance of multiple bonds. We used the H2CN NMR pulse sequence to detect heparin binding through the side-chain resonances Hε–Cε–Nζ of Lys and Hδ–Cδ–Nε of Arg in the two proteins of hepatoma-derived growth factor (HDGF) and basic fibroblast growth factor (FGF2). H2CN titration experiments revealed chemical shift perturbations in the side chains, which were correlated with the free energy changes in various mutants. The residues K19 in HDGF and K125 in FGF2 demonstrated the most significant perturbations, consistent with our previous observation that the two residues are crucial for binding. The result suggests that H2CN NMR provides a precise evaluation for the electrostatic interactions. The discrepancy observed between backbone and side chain chemical shifts is correlated to the solvent accessibility of residues that the K19 and K125 backbones are highly buried with the restricted backbone conformation and are not strongly affected by the events at the end of the side chains.  相似文献   

10.
The albA gene of Klebsiella oxytoca encodes a protein of 221 amino acids that binds the albicidin phytotoxin with a high affinity (dissociation constant = 6.4 x 10(-8) M). For this study, circular dichroism (CD) spectrometry and an alanine scanning mutagenesis approach were used in combination to investigate the molecular and conformational mechanisms of this high-affinity protein-ligand interaction. CD analysis revealed that AlbA contains a high-affinity binding site, and binding of the albicidin ligand to AlbA in a low-ionic-strength environment induced significant conformational changes. The ligand-dependent conformational changes of AlbA were specific and rapid and reached a stable plateau within seconds after the addition of the antibiotic. However, such conformational changes were not detected when AlbA and albicidin were mixed in the high-ionic-strength buffer that is required for maximal binding activity. Based on the conceptual model of protein-ligand interaction, we propose that a threshold ion strength allows AlbA to complete its conformational rearrangement and resume its original stable structure for accommodation of the bound albicidin. Mutagenesis analysis showed that the replacement of Lys106, Trp110, Tyr113, Leu114, Tyr126, Pro134, and Trp162 with alanine did not change the overall conformational structure of AlbA but decreased the albicidin binding activity about 30 to 60%. We conclude that these residues, together with the previously identified essential residue His125, constitute a high-affinity binding pocket for the ligand albicidin. The results also suggest that hydrophobic and electrostatic potentials of these key amino acid residues may play important roles in the AlbA-albicidin interaction.  相似文献   

11.
Chloride-dependent α-amylases, angiotensin-converting enzyme (ACE), and photosystem II (PSII) are activated by bound chloride. Chloride-binding sites in these enzymes contain a positively charged Arg or Lys residue crucial for chloride binding. In α-amylases and ACE, removal of chloride from the binding site triggers formation of a salt bridge between the positively charged Arg or Lys residue involved in chloride binding and a nearby carboxylate residue. The mechanism for chloride activation in ACE and chloride-dependent α-amylases is 2-fold: (i) correctly positioning catalytic residues or other residues involved in stabilizing the enzyme-substrate complex and (ii) fine-tuning of the pKa of a catalytic residue. By using examples of how chloride activates α-amylases and ACE, we can gain insight into the potential mechanisms by which chloride functions in PSII. Recent structural evidence from cyanobacterial PSII indicates that there is at least one chloride-binding site in the vicinity of the oxygen-evolving complex (OEC). Here we propose that, in the absence of chloride, a salt bridge between D2:K317 and D1:D61 (and/or D1:E333) is formed. This can cause a conformational shift of D1:D61 and lower the pKa of this residue, making it an inefficient proton acceptor during the S-state cycle. Movement of the D1:E333 ligand and the adjacent D1:H332 ligand due to chloride removal could also explain the observed change in the magnetic properties of the manganese cluster in the OEC upon chloride depletion.  相似文献   

12.
13.
Because of wide ligand-binding ability and significant industrial interest of beta-lactoglobulin (beta-LG), its binding properties have been extensively studied. However, there still exists a controversy as to where a ligand binds, since at least two potential hydrophobic binding sites in beta-LG have been postulated for ligand binding: an internal one (calyx) and an external one (near the N-terminus). In this work, the local polarity and hydrophobic binding sites of beta-LG have been characterized by using N-terminal specific fluorescence labeling combined with a polarity-sensitive fluorescent probe 3-(4-chloro-6-hydrazino- 1,3,5-triazinylamino)-7-(dimethylamino)-2-methylphenazine (CHTDP). The polarity within the calyx is found to be extremely low, which is explained in terms of superhydrophobicity possibly resulting from its nanostructure, and the polarity is increased with the destruction of the calyx by heat treatment. However, the polarity of the N-terminal domain in native beta-LG is decreased after thermal denaturation. This polarity trend toward decreasing instead of increasing shows that beta-LG may have no definite external hydrophobic binding site. The hydrophobic binding of a ligand such as CHTDP at the surface of the protein is probably achieved via appropriate assembling of corresponding hydrophobic residues rather than via a fixed external hydrophobic binding site. Also, the ligand-binding location in beta-LG is found to be relevant to not only experimental conditions (pH < or = 6.2 or pH > 7.1) but also binding mechanisms (hydrophobic affinity or electrostatic interaction).  相似文献   

14.
To gain further insight into the difference in substrate specificity between endoglucanase and cellobiohydrolase, the intrinsic fluorescence properties of cellobiohydrolase I (CBH I) and endoglucanase I (EG I) from Trichoderma pseudokiningii S-38 were investigated. The results for the spectral characteristics, ligand binding and fluorescence quenching suggest that the fluorescence of two enzymes comes from tryptophan residues, and that tryptophan residue(s) may be involved in the function of the two enzymes. The results also suggest that the binding tryptophan in EG I may be more exposed to solvent than that in CBH I. This interpretation is supported by the observations that the effects of pH upon the fluorescence of EG I are greater than that of CBH I; spectral shifts are different in EG I and CBH I under various conditions, and fluorescence lifetime changes caused by cellobiose binding are larger for EG I than for CBH I.  相似文献   

15.
To gain further insight into the difference in substrate specificity between endoglucanase and cellobiohydrolase, the intrinsic fluorescence properties of cellobiohydrolase I (CBH I) and endoglucanase I (EG I) from Trichoderma pseudokiningii S-38 were investigated. The results for the spectral characteristics, ligand binding and fluorescence quenching suggest that the fluorescence of two enzymes comes from tryptophan residues, and that tryptophan residue(s) may be involved in the function of the two enzymes. The results also suggest that the binding tryptophan in EG I may be more exposed to solvent than that in CBH I. This interpretation is supported by the observations that the effects of pH upon the fluorescence of EG I are greater than that of CBH I; spectral shifts are different in EG I and CBH I under various conditions, and fluorescence lifetime changes caused by cellobiose binding are larger for EG I than for CBH I.  相似文献   

16.
Enzyme function often involves a conformational change. There is a general agreement that loops play a vital role in correctly positioning the catalytically important residues. Nevertheless, predicting the functional loops and most importantly their role in enzyme function remains a difficult task. A major reason for this difficulty is that loops that undergo conformational change are frequently not well conserved in their primary sequence. beta1,4-Galactosyltransferase is one such enzyme. There, the amino acid sequence of a long loop that undergoes a large conformational change upon substrate binding is not well conserved. Our molecular dynamics simulations show that the large conformational change in the long loop is brought about by a second, interacting loop. Interestingly, while the structural change of the second loop is much smaller than that of the long loop, its sequence (particularly glycine residues) is highly conserved. We further examine the generality of the proposition that there are loops that trigger movements but nevertheless show little or no structural changes in crystals. We focus on two other enzymes, enolase and lipase. We chose these enzymes, since they too undergo conformational change upon ligand binding, however, they have different folds and different functions. Through multiple sets of simulations we show that the conformational change of the functional loop(s) is brought about through communication of flexibility by triggering loops that have several glycine residues. We further propose that similar to the conservation of common favorable fold types and structural motifs, evolution has also conserved common "skillful" mechanisms. Mechanisms may be conserved across different folds, sequences and functions, with adaptation to specific enzymatic roles.  相似文献   

17.

Background  

Many structural properties such as solvent accessibility, dihedral angles and helix-helix contacts can be assigned to each residue in a membrane protein. Independent studies exist on the analysis and sequence-based prediction of some of these so-called one-dimensional features. However, there is little explanation of why certain residues are predicted in a wrong structural class or with large errors in the absolute values of these features. On the other hand, membrane proteins undergo conformational changes to allow transport as well as ligand binding. These conformational changes often occur via residues that are inherently flexible and hence, predicting fluctuations in residue positions is of great significance.  相似文献   

18.
Three subtypes of retinoic acid receptors (RAR), termed RAR alpha, RAR beta, and RAR gamma, have been described. They are composed of different structural domains, including distinct domains for DNA and ligand binding. RARs specifically bind all-trans-retinoic acid (RA), 9-cis-RA, and retinoid analogs. In this study, we examined the functional role of cysteine and arginine residues in the ligand-binding domain of hRAR alpha (hRAR alpha-LBD, amino acids 154 to 462). All conserved cysteine and arginine residues in this domain were mutated by site-directed mutagenesis, and the mutant proteins were characterized by blocking reactions, ligand-binding experiments, transactivation assays, and protease mapping. Changes of any cysteine residue of the hRAR alpha-LBD had no significant influence on the binding of all-trans RA or 9-cis RA. Interestingly, residue C-235 is specifically important in antagonist binding. With respect to arginine residues, only the two single mutations of R-276 and R-394 to alanine showed a dramatic decrease of agonist and antagonist binding whereas the R272A mutation showed only a slight effect. For all other arginine mutations, no differences in affinity were detectable. The two mutations R217A and R294A caused an increased binding efficiency for antagonists but no change in agonist binding. From these results, we can conclude that electrostatic interactions of retinoids with the RAR alpha-LBD play a significant role in ligand binding. In addition, antagonists show distinctly different requirements for efficient binding, which may contribute to their interference in the ligand-inducible transactivation function of RAR alpha.  相似文献   

19.
Baysal C  Atilgan AR 《Proteins》2001,45(1):62-70
We demonstrate that the stabilization of the binding region is accomplished at the expense of a loss in the stability of the rest of the protein. A novel molecular mechanics (MM) approach is introduced to distinguish residue stabilities of proteins in a given conformation. As an example, the relative stabilities of folded chymotrypsin inhibitor 2 (CI2) in unbound form, and CI2 in complex with subtilisin novo is investigated. The conformation of the molecule in the two states is almost identical, with an approximately 0.6-A root-mean-square deviation (RMSD) of the Calpha atoms. On binding, the packing density changes only at the binding loop. However, residue fluctuations in the rest of the protein are greatly altered solely due to those contacts, indicating the effective propagation of perturbation and the presence of remotely controlling residues. To quantify the interplay between packing density, packing order, residue fluctuations, and residue stability, we adopt an MM approach whereby small displacements are inserted at selected residues, followed by energy minimization; the displacement of each residue in response to such perturbations are organized in a perturbation-response matrix L. We define residue stability lambda(i) = summation operator((j)L(ij))/ summation operator((j) L(ji)) as the ratio of the amount of change to which the residue is amenable, to the ability of a given residue to induce change. We then define the free energy associated with residue stability, DeltaG(lambda) = -RT ln lambda. DeltaG(lambda) intrinsically selects the residues that are in the folding core. Upon complexation, the binding loop becomes more resistant to perturbation, in contrast to the alpha-helix that favors change. Although the two forms of CI2 are structurally similar, residue fluctuations differ vastly, and the stability of many residues is altered upon binding. The decrease in entropy introduced by binding is thus compensated by these changes.  相似文献   

20.
Ligand binding may involve a wide range of structural changes in the receptor protein, from hinge movement of entire domains to small side-chain rearrangements in the binding pocket residues. The analysis of side chain flexibility gives insights valuable to improve docking algorithms and can provide an index of amino-acid side-chain flexibility potentially useful in molecular biology and protein engineering studies. In this study we analyzed side-chain rearrangements upon ligand binding. We constructed two non-redundant databases (980 and 353 entries) of "paired" protein structures in complexed (holo-protein) and uncomplexed (apo-protein) forms from the PDB macromolecular structural database. The number and identity of binding pocket residues that undergo side-chain conformational changes were determined. We show that, in general, only a small number of residues in the pocket undergo such changes (e.g., approximately 85% of cases show changes in three residues or less). The flexibility scale has the following order: Lys > Arg, Gln, Met > Glu, Ile, Leu > Asn, Thr, Val, Tyr, Ser, His, Asp > Cys, Trp, Phe; thus, Lys side chains in binding pockets flex 25 times more often then do the Phe side chains. Normalizing for the number of flexible dihedral bonds in each amino acid attenuates the scale somewhat, however, the clear trend of large, polar amino acids being more flexible in the pocket than aromatic ones remains. We found no correlation between backbone movement of a residue upon ligand binding and the flexibility of its side chain. These results are relevant to 1. Reduction of search space in docking algorithms by inclusion of side-chain flexibility for a limited number of binding pocket residues; and 2. Utilization of the amino acid flexibility scale in protein engineering studies to alter the flexibility of binding pockets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号