首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although often clinically indistinguishable in the early stages, Parkinson’s disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) have distinct neuropathological changes. The aim of the current study was to identify white matter tract neurodegeneration characteristic of each of the three syndromes. Tract-based spatial statistics (TBSS) was used to perform a whole-brain automated analysis of diffusion tensor imaging (DTI) data to compare differences in fractional anisotropy (FA) and mean diffusivity (MD) between the three clinical groups and healthy control subjects. Further analyses were conducted to assess the relationship between these putative indices of white matter microstructure and clinical measures of disease severity and symptoms. In PSP, relative to controls, changes in DTI indices consistent with white matter tract degeneration were identified in the corpus callosum, corona radiata, corticospinal tract, superior longitudinal fasciculus, anterior thalamic radiation, superior cerebellar peduncle, medial lemniscus, retrolenticular and anterior limb of the internal capsule, cerebral peduncle and external capsule bilaterally, as well as the left posterior limb of the internal capsule and the right posterior thalamic radiation. MSA patients also displayed differences in the body of the corpus callosum corticospinal tract, cerebellar peduncle, medial lemniscus, anterior and superior corona radiata, posterior limb of the internal capsule external capsule and cerebral peduncle bilaterally, as well as the left anterior limb of the internal capsule and the left anterior thalamic radiation. No significant white matter abnormalities were observed in the PD group. Across groups, MD correlated positively with disease severity in all major white matter tracts. These results show widespread changes in white matter tracts in both PSP and MSA patients, even at a mid-point in the disease process, which are not found in patients with PD.  相似文献   

2.

Objective

To characterize parasomnia behaviors on arousal from NREM sleep in Parkinson’s Disease (PD) and Multiple System Atrophy (MSA).

Methods

From 30 patients with PD, Dementia with Lewy Bodies/Dementia associated with PD, or MSA undergoing nocturnal video-polysomnography for presumed dream enactment behavior, we were able to select 2 PD and 2 MSA patients featuring NREM Parasomnia Behviors (NPBs). We identified episodes during which the subjects seemed to enact dreams or presumed dream-like mentation (NPB arousals) versus episodes with physiological movements (no-NPB arousals). A time-frequency analysis (Morlet Wavelet Transform) of the scalp EEG signals around each NPB and no- NPB arousal onset was performed, and the amplitudes of the spectral frequencies were compared between NPB and no-NPB arousals.

Results

19 NPBs were identified, 12 of which consisting of ‘elementary’ NPBs while 7 resembling confusional arousals. With quantitative EEG analysis, we found an amplitude reduction in the 5-6 Hz band 40 seconds before NPBs arousal as compared to no-NPB arousals at F4 and C4 derivations (p<0.01).

Conclusions

Many PD and MSA patients feature various NREM sleep-related behaviors, with clinical and electrophysiological differences and similarities with arousal parasomnias in the general population.

Significance

This study help bring to attention an overlooked phenomenon in neurodegenerative diseases.  相似文献   

3.

Background

Falls are a major problem for people with Parkinson’s disease (PD). Many studies indicate that more than 50% of people with PD have difficulty in turning that may lead to falls during daily activities. The aims of this study were to identify the relationship between turning performance and falls, and to determine the factors that influence turning performance.

Methods

This study examined 45 patients with idiopathic PD (Hoehn and Yahr stage 1–3) using a battery of tests, including 180° turn time, balance, and muscle strength. The levels of disease severity and freezing of gait were also measured. The number of falls in the past 6 months was recorded.

Results

Sixteen out of forty-five participants experienced falls in the past 6 months. A receiver operating characteristic curve showed that turn time was highly related to falls [more affected side: sensitivity = 0.81, specificity = 0.79, area under the curve (AUC) = 0.83; less affected side: sensitivity = 0.88, specificity = 0.76, AUC = 0.83]. The most important factor influencing turn time was balance ability (both sides: p = 0.000) according to the regression model. Correlations between turn time and dynamic balance were further established with reaction time, movement velocity, endpoint excursion, and maximal excursion of the LOS (limits of stability) test.

Conclusion

The time needed to complete a 180° turn during the SQT (step/quick turn) test is a good index to differentiate fallers from non-fallers in persons with PD. Turn time is most influenced by balance. Furthermore, balance control, especially in an anterior or sideways direction, is important for turning performance.  相似文献   

4.

Background

There have been limited comparative data regarding the investigations on pulmonary and respiratory muscle function in the patients with different parkinsonism disorders such as Parkinson’s disease (PD) and multiple system atrophy (MSA) versus normal elderly. The present study is aiming to characterize the performance of pulmonary function and respiratory muscle strength in PD and MSA, and to investigate the association with severity of motor symptoms and disease duration.

Methods

Pulmonary function and respiratory muscle strength tests were performed in 30 patients with PD, 27 with MSA as well as in 20 age-, sex-, height-, weight-matched normal elderly controls. All the patients underwent United Parkinson’s disease rating scale (UPDRS) or united multiple system atrophy rating scale (UMSARS) separately as diagnosed.

Results

Vital capacity, forced expiratory volume in 1 second and forced vital capacity decreased, residual volume and ratio of residual volume to total lung capacity increased in both PD and MSA groups compared to controls (p<0.05). Diffusing capacity was decreased in the MSA group, compared with PD and normal elderly control groups (p<0.05). Respiratory muscle strength was lower in both PD and MSA groups than in controls (p<0.05). The values representing spirometry function and respiratory muscle strength were found to have a negative linear correlation with mean score of UPDRS-III in PD and mean score of UMSARS-I in MSA. Respiratory muscle strength showed a negative linear correlation with the mean score of UMSARS-II and disease duration in MSA patients.

Conclusions

These findings suggest that respiratory dysfunction is involved in PD and MSA. Respiratory muscle strength is remarkably reduced, and some of the parameters correlate with disease duration and illness severity. The compromised respiratory function in neurodegenerative disorders should be the focus of further researches.  相似文献   

5.
Parkinson’s disease (PD) is the most common motor neurodegenerative disorder. Olfactory dysfunction is a prevalent feature of PD. It often precedes motor symptoms by several years and is used in assisting PD diagnosis. However, the cellular and molecular bases of olfactory dysfunction in PD are not known. The fruit fly Drosophila melanogaster, expressing human alpha-synuclein protein or its mutant, A30P, captures several hallmarks of PD and has been successfully used to model PD in numerous studies. First, we report olfactory deficits in fly expressing A30P (A30P), showing deficits in two out of three olfactory modalities, tested – olfactory acuity and odor discrimination. The remaining third modality is odor identification/naming. Second, oxidative stress is an important environmental risk factor of PD. We show that oxidative stress exacerbated the two affected olfactory modalities in younger A30P flies. Third, different olfactory receptor neurons are activated differentially by different odors in flies. In a separate experiment, we show that the odor discrimination deficit in A30P flies is general and not restricted to a specific class of chemical structure. Lastly, by restricting A30P expression to dopamine, serotonin or olfactory receptor neurons, we show that A30P expression in dopamine neurons is necessary for development of both acuity and discrimination deficits, while serotonin and olfactory receptor neurons appeared not involved. Our data demonstrate olfactory deficits in a synuclein fly PD model for exploring olfactory pathology and physiology, and for monitoring PD progression and treatment.  相似文献   

6.

Objective

Studies of bimanual actions similar to activities of daily living (ADLs) are currently lacking in evaluating fine motor control in Parkinson’s disease patients implanted with bilateral subthalamic deep brain stimulators. We investigated basic time and force characteristics of a bimanual task that resembles performance of ADLs in a group of bilateral subthalamic deep brain stimulation (DBS) patients.

Methods

Patients were evaluated in three different DBS parameter conditions off stimulation, on clinically derived stimulation parameters, and on settings derived from a patient-specific computational model. Model-based parameters were computed as a means to minimize spread of current to non-motor regions of the subthalamic nucleus via Cicerone Deep Brain Stimulation software. Patients were evaluated off parkinsonian medications in each stimulation condition.

Results

The data indicate that DBS parameter state does not affect most aspects of fine motor control in ADL-like tasks; however, features such as increased grip force and grip symmetry varied with the stimulation state. In the absence of DBS parameters, patients exhibited significant grip force asymmetry. Overall UPDRS-III and UPDRS-III scores associated with hand function were lower while patients were experiencing clinically-derived or model-based parameters, as compared to the off-stimulation condition.

Conclusion

While bilateral subthalamic DBS has been shown to alleviate gross motor dysfunction, our results indicate that DBS may not provide the same magnitude of benefit to fine motor coordination.  相似文献   

7.

Background

It is often hard to differentiate Parkinson’s disease (PD) and parkinsonian variant of multiple system atrophy (MSA-P), especially in the early stages. Cardiac sympathetic denervation and putaminal rarefaction are specific findings for PD and MSA-P, respectively.

Purpose

We investigated diagnostic accuracy of putaminal apparent diffusion coefficient (ADC) test for MSA-P and 123I-metaiodobenzylguanidine (MIBG) scintigram for PD, especially in early-stage patients.

Methods

The referral standard diagnosis of PD and MSA-P were the diagnostic criteria of the United Kingdom Parkinson’s Disease Society Brain Bank Criteria and the second consensus criteria, respectively. Based on the referral standard criteria, diagnostic accuracy [area under the receiver-operator characteristic curve (AUC), sensitivity and specificity] of the ADC and MIBG tests was estimated retrospectively. Diagnostic accuracy of these tests performed within 3 years of symptom onset was also investigated.

Results

ADC and MIBG tests were performed on 138 patients (20 MSA and 118 PD). AUC was 0.95 and 0.83 for the ADC and MIBG tests, respectively. Sensitivity and specificity were 85.0% and 89.0% for MSA-P diagnosis by ADC test and 67.0% and 80.0% for PD diagnosis by MIBG test. When these tests were restricted to patients with disease duration ≤3 years, the sensitivity and specificity were 75.0% and 91.4% for the ADC test (MSA-P diagnosis) and 47.7% and 92.3% for the MIBG test (PD diagnosis).

Conclusions

Both tests were useful in differentiating between PD and MSA-P, even in the early stages. In early-stage patients, elevated putaminal ADC was a diagnostic marker for MSA-P. Despite high specificity of the MIBG test, careful neurological history and examinations were required for PD diagnosis because of possible false-negative results.  相似文献   

8.
“Modern” medicine and pharmacology require an effective medical drug with a single compound for a specific disease. This seams very scientific but usually has unavoidable side effects. For example, the chemical therapy to cancer can totally damage the immunological ability of the patient leading to death early than non-treatment. On the other hand, natural antioxidant drugs not only can cure the disease but also can enhance the immunological ability of the patient leading to healthier though they usually have several compounds or a mixture. For the degenerative disease such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), natural antioxidant drugs are suitable drugs, because the pathogenesis of these diseases is complex with many targets and pathways. These effects are more evidence when the clinic trial is for long term treatment. The author reviews the studies on the protecting effects of natural antioxidants on neurons in neurodegenerative diseases, especially summarized the results about protective effect of green tea polyphenols on neurons against apoptosis of cellular and animal PD models, and of genestine and nicotine on neurons against Aβ—induced apoptosis of hippocampal neuronal and transgenic mouse AD models. Special issue in honor of Dr. Akitane Mori.  相似文献   

9.
Oxidative and Inflammatory Pathways in Parkinson’s Disease   总被引:2,自引:0,他引:2  
Parkinson’s disease (PD) is the second most prevalent age-related neurodegenerative disease with physiological manifestations including tremors, bradykinesia, abnormal postural reflexes, rigidity and akinesia and pathological landmarks showing losses of dopaminergic neurons in the substantia nigra. Although the etiology of PD has been intensively pursued for several decades, biochemical mechanisms and genetic and epigenetic factors leading to initiation and progression of the disease remain elusive. Environmental toxins including (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP, paraquat and rotenone have been shown to increase the risk of PD in humans. Oxidative stress remains the leading theory for explaining progression of PD. Studies with cell and animal models reveal oxidative and inflammatory properties of these toxins and their ability to activate glial cells which subsequently destroy neighboring dopaminergic neurons. This review describes pathological effects of neurotoxins on cells and signaling pathways for production of reactive oxygen species (ROS) that underline the pathophysiology of PD. Special issue article in honor of Dr. George DeVries.  相似文献   

10.
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. The development of pathology is associated with the loss of dopaminergic neurons, mainly in substantia nigra pars compacta. Dopamine deficiency causes a whole range of severe motor symptoms, including bradykinesia, postural instability, muscle rigidity, and tremor. Studies have shown the primary role of the alpha-synuclein protein in this neurodegenerative disease. A large amount of data indicates different mechanisms of the toxic effect of alpha-synuclein. The process of neurodegeneration in PD is the result of significant disturbances in mitochondrial functions and/or genetic mutations. The number of mutated genes in hereditary and sporadic forms of Parkinson’s disease includes genes encoding PINK1 and Parkin, which are the main participants in the mitochondrial “quality control” system. The earliest biochemical hallmarks of the disease are disturbances of the mitochondrial interaction with endoplasmic reticulum, mitochondrial dynamics, Ca2+ homeostasis, and an increase in the level of mitochondrial reactive oxygen species. All these factors exert damaging effects on dopaminergic neurons.  相似文献   

11.
Microglia are the representative myeloid cells in the brain, and their over-activation plays an important role in the pathogenesis of Parkinson’s disease (PD). Microglia activation is believed to be regulated by the CD200-CD200R signaling. As the peripheral counterpart of microglia, monocyte-derived macrophages (MDMs) share the same progenitor and antigen markers, and they have similar biological behaviors and mirror microglial function in the brain. Here, we studied CD200R expression and its regulation in MDMs from 32 PD cases, 27 age-matched old controls, and 28 young controls. We found that the basal CD200R expression is similar in MDMs from young control, old control and PD patients. However, the induction of CD200R expression in MDMs under various conditions is impaired in the old groups, especially in PD patients. There was a selective decrease in CD200R expression induced by co-culture with dying PC12 cells in MDMs from PD cases, as compared with MDMs from the age-matched controls. We also found that the inducible CD200R expression correlated inversely with the onset age of PD and to tumor necrosis factor-α (TNF-α) released from MDMs. These results suggest an intrinsic abnormality in the CD200-CD200R signaling in MDMs during aging and, especially, in PD. We speculate that in the PD brain, microglia might undergo abnormalities similar to MDMs.  相似文献   

12.
Recent findings from genetic studies suggest that defective mitochondrial quality control may play an important role in the development of Parkinson's disease (PD). Such defects may result in the impairment of neuronal mitochondria, which leads to both synaptic dysfunction and cell death and results in neurodegeneration. Here, we review state-of-the-art knowledge of how pathways affecting mitochondrial quality control might contribute to PD, with a particular emphasis on the molecular mechanisms employed by PTEN-induced putative kinase 1 (PINK1), HtrA2 and Parkin to regulate mitochondrial quality control.  相似文献   

13.
14.
He  Ling  Wang  Jihong  Yang  Yazhi  Li  Jian  Tu  Huaijun 《Neurochemical research》2022,47(6):1491-1502
Neurochemical Research - Parkinson’s disease (PD), the main risk factor for which is age, is one of the most common neurodegenerative diseases and imposes a substantial burden on affected...  相似文献   

15.
16.

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common neurodegenerative diseases worldwide. They are characterized by the loss of neurons and synapses in special parts of the central nervous system (CNS). There is no definitive treatment for AD and PD, but extensive studies are underway to identify the effective drugs which can slow the progression of these diseases by affecting the factors involved in their pathophysiology (i.e., aggregated proteins, neuroinflammation, and oxidative stress). Icariin, a natural compound isolated from Epimedii herba, is known because of its anti-inflammatory and anti-oxidant properties. In this regard, there are numerous studies indicating its potential as a natural compound against the progression of CNS disorders, such as neurodegenerative diseases. Therefore, this review aims to re-examine findings on the pharmacologic effects of icariin on factors involved in the pathophysiology of AD and PD.

  相似文献   

17.
18.
Approximately 20% of individuals with Parkinson’s disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset familial PD followed by frequency assessment in 975 PD cases and 1014 ethnically-matched controls and linkage analysis to identify potentially causal variants. Based on the predicted penetrance and the frequencies, a variant in PLXNA4 proved to be the best candidate and PLXNA4 was screened for additional variants in 862 PD cases and 940 controls, revealing an excess of rare non-synonymous coding variants in PLXNA4 in individuals with PD. Although we cannot conclude that the variant in PLXNA4 is indeed the causative variant, these findings are interesting in the light of a surfacing role of axonal guidance mechanisms in neurodegenerative disorders but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance.  相似文献   

19.
Environmental toxins, genetic predisposition and old age are major risk factors for Parkinson’s disease (PD). Although the mechanism(s) underlying selective dopaminergic (DA) neurodegeneration remain unclear, molecular studies in both toxin based models and genetic based models of the disease suggest a major etiologic role for mitochondrial dysfunction in the pathogenesis of PD. Further, recent studies have presented clear evidence for a high burden of mtDNA deletions within the substantia nigra neurons in individuals with PD. Ultimately, an understanding of the molecular events which precipitate DA neurodegeneration in idiopathic PD will enable the development of targeted and effective therapeutic strategies. We review recent advances and current understanding of the genetic factors, molecular mechanisms and animal models of PD.  相似文献   

20.

Background

Whether the occurrence of posterior atrophy (PA) and medial temporal lobe atrophy (MTA) was correlated with cognitive and non-cognitive symptoms in Alzheimer’s disease (AD) and mild cognitive impairment (MCI) patients are unclear.

Methods

Patients with probable AD and MCI from a medical center outpatient clinic received attention, memory, language, executive function evaluation and Mini-Mental Status Examination (MMSE). The severity of dementia was rated by the Clinical Dementia Rating (CDR) Sum of Box (CDR-SB). The neuropsychiatric inventory (NPI) subscale of agitation/aggression and mood symptoms was also applied. Magnetic resonance imaging (MRI) was scored visually for the MTA, PA and white matter hyperintensity (WMH) scores.

Results

We recruited 129 AD and 31 MCI (mean age 78.8 years, 48% female) patients. MMSE scores, memory, language and executive function were all significantly decreased in individuals with AD than those with MCI (p < 0.01). MTA and PA scores reflected significant atrophy in AD compared to MCI; however, the WMH scores did not differ. The MTA scores were significantly correlated with the frontal, parieto-occipital and global WMH scores (p < 0.01) while the PA scores showed a correlation with the parieto-occipital and temporal WMH scores (p < 0.01). After adjusting for age, education, APOE4 gene and diagnostic group covariates, the MTA scores showed a significant association with MMSE and CDR-SB, while the right side PA scores were significantly associated with NPI-agitation/aggression subscales (p < 0.01).

Conclusion

Regional atrophy is related to different symptoms in patients with AD or MCI. PA score is useful as a complementary measure for non-cognitive symptom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号