首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-1 receptor activated kinases (IRAKs) play crucial roles in the Toll-like receptor (TLR) mediated signal transduction pathways that control host innate immune responses. Here we report the cloning of an IRAK1 cDNA (named ScIRAK1) from the mandarin fish. The predicted ScIRAK1 peptide contains a death domain and a serine/threonine-specific kinase domain. Quantitative RT-PCR showed that ScIRAK1 mRNA was primarily expressed in blood cells and posterior kidney. Seven days following infection with infectious spleen and kidney necrosis virus (ISKNV), the ScIRAK1 mRNA level was significantly higher in the blood cells of clinically symptomatic fish than in the blood cells of asymptomatic fish or control fish injected with phosphate-buffered saline. Additional experiments showed that overexpression of ScIRAK1 in the 293T cells could induce NF-κB activation. These results suggest that ScIRAK1 may play a role in the pathology of ISKNV infection in the mandarin fish.  相似文献   

2.
3.
Infectious spleen and kidney necrosis virus (ISKNV), belonging to the genus Megalocytivirus in the family Iridoviridae, is one of the major agents causing mortality and economic losses to the freshwater fish culture industry in Asian countries. Currently, little information regarding the antigenic properties of Megalocytivirus (especially ISKNV) is available. Our previous study using four different workflows with systematic and comprehensive proteomic approaches led to the identification of 38 ISKNV virion-associated proteins (J. Virol. 2869-2877, 2011). Thus, in this report, the antigenicity of 31 structural proteins from ISKNV virion was investigated. A one-dimensional gel electrophoresis immunoblot profile coupled with MALDI-TOF-TOF MS/MS was applied to identify six immunogenic viral proteins, namely, ORFs major capsid protein (006L), 054L, 055L, 101L, 117L, and 125L. Then, the antigenicity of 31 structural proteins was characterized by Western blot by using pooled sera from mandarin fish that survived ISKNV infection. Of the 31 viral proteins, 22 were recognized by the fish ISKNV antiserum. Furthermore, this antiserum neutralizes MFF-1 cells ISKNV infection. To our knowledge, this study is the first report on the immunogenicity of viral proteins and characterization of the proteome of megalocytivirus infective agents. Our findings are expected to promote the development of effective vaccine candidates.  相似文献   

4.
Guo CJ  Wu YY  Yang LS  Yang XB  He J  Mi S  Jia KT  Weng SP  Yu XQ  He JG 《Journal of virology》2012,86(5):2621-2631
Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the genus Megalocytivirus from the family Iridoviridae. Megalocytiviruses have been implicated in more than 50 fish species infections and currently threaten the aquaculture industry, causing great economic losses in China, Japan, and Southeast Asia. However, the cellular entry mechanisms of megalocytiviruses remain largely uncharacterized. In this study, the main internalization mechanism of ISKNV was investigated by using mandarin fish fry (MFF-1) cells. The progression of ISKNV infection is slow, and infection is not inhibited when the cells are treated with ammonium chloride (NH(4)Cl), chloroquine, sucrose, and chlorpromazine, which are inhibitors of clathrin-dependent endocytosis. The depletion of cellular cholesterol by methyl-β-cyclodextrin results in the significant inhibition of ISKNV infection; however, the infection is resumed with cholesterol replenishment. Inhibitors of caveolin-1-involved signaling events, including phorbol 12-myristate 13-acetate (PMA), genistein, and wortmannin, impair ISKNV entry into MFF-1 cells. Moreover, ISKNV entry is dependent on dynamin and the microtubule cytoskeleton. Cofraction analysis of ISKNV and caveolin-1 showed that ISKNV colocates with caveolin-1 during virus infection. These results indicate that ISKNV entry into MFF-1 cells proceeds via classical caveola-mediated endocytosis and is dependent on the microtubules that serve as tracks along which motile cavicles may move via a caveola-caveosome-endoplasmic reticulum (ER) pathway. As a fish iridovirus, ISKNV entry into MFF-1 cells is different from the clathrin-mediated endocytosis of frog virus 3 entry into mammalian cells (BHK-21) at 28°C, which has been recognized as a model for iridoviruses. Thus, our work may help further the understanding of the initial steps of iridovirus infection.  相似文献   

5.
We examined the distribution of iridoviruses in 10 freshwater ornamental fish species hatched in Korea and imported from other Asian countries using both 1-step and 2-step polymerase chain reation (PCR). None of the 10 fish species analyzed were free of iridovirus as shown by 2-step PCR positive results, and 3 species yielded 1-step PCR positive results with associated mortality. Cloned PCR amplicons of the adenosine triphosphatase (ATPase) and major capsid protein (MCP) genes in genomic DNA of iridovirus showed the same nucleotide sequences as that of infectious spleen and kidney necrosis virus (ISKNV) isolated from the mandarinfish Siniperca chuatsi. These results indicate the presence of ISKNV disease in various ornamental fish as new host species and that the disease is widespread throughout different Asian countries including Korea, Singapore and China. Such infections were either clinical with associated mortality (and 1-step PCR positive) or asymptomatic in fish that were externally healthy (and only positive in 2-step PCR). Molecular analyses of the K2 region performed on iridovirus samples isolated from freshwater ornamental fishes revealed deletion/insertion of repetitive sequences of various lengths (42 to 339 bp), depending on the ISKNV isolates, without substitutions. Experimental infection of pearl gourami Trichogaster leeri and silver gourami T. microlepis with a tissue homogenate of pearl gourami infected by ISKNV induced 70 and 20% cumulative mortalities in the pearl and silver gourami, respectively.  相似文献   

6.
7.
Wang ZL  Xu XP  He BL  Weng SP  Xiao J  Wang L  Lin T  Liu X  Wang Q  Yu XQ  He JG 《Journal of virology》2008,82(9):4371-4383
Infectious spleen and kidney necrosis virus (ISKNV) causes a pandemic and serious disease in fish. Infection by ISKNV causes epidermal lesions, in which petechial hemorrhages and abdominal edema are prominent features. ISKNV ORF48R contains a domain similar to that of the platelet-derived growth factor and vascular endothelial growth factor (VEGF) families of proteins. ISKNV ORF48R showed higher similarity to the VEGFs encoded by Megalocytivirus and Parapoxvirus than to those encoded in fish and mammals. We used zebrafish as a model and constructed a recombinant plasmid containing the DNA sequence of ISKNV ORF48R to study ISKNV infection. The plasmid was microinjected into zebrafish embryos at the one-cell stage. Overexpression of the ISKNV ORF48R gene results in pericardial edema and dilation at the tail region of zebrafish embryos, suggesting that ISKNV ORF48R induces vascular permeability. ISKNV ORF48R is also able to stimulate a striking expression of flk1 in the zebrafish dorsal aorta and the axial vein. Furthermore, ISKNV ORF48R, while cooperating with zebrafish VEGF(121), can stimulate more striking expression of flk1 than can either ISKNV ORF48R or zebrafish VEGF(121) alone. However, decreased expression of FLK-1 by gene knockdown results in the disappearance of pericardial edema and dilation at the tail region of zebrafish embryos induced by overexpression of ISKNV ORF48R in the early stages of embryonic development.  相似文献   

8.
He BL  Yuan JM  Yang LY  Xie JF  Weng SP  Yu XQ  He JG 《PloS one》2012,7(5):e37001
Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus of the Iridoviridae family. It causes a serious and potentially pandemic disease in wild and cultured fishes. ISKNV infection induces evident apoptosis in mandarin fish (Siniperca chuatsi) and zebrafish (Danio renio). However, the mechanism is still unknown. After a genome-wide bioinformatics analysis of ISKNV-encoded proteins, the ISKNV open reading frame 111L (ORF111L) shows a high similarity to the tumour necrosis factor receptor-associated factor (TRAF) encoded by fish, mice and mammals, which is essential for apoptotic signal transduction. Moreover, ORF111L was verified to directly interact with the zebrafish TNF receptor type 1 associated death domain protein (TRADD). A recombinant plasmid containing the DNA sequence of ORF111L was constructed and microinjected into zebrafish embryos at the 1-2 cell stage to investigate its biological function in vivo. ORF111L overexpression in the embryos resulted in increased apoptosis. ORF111L-induced apoptosis was clearly associated with significant caspase 8 upregulation and activation. The knockdown of zebrafish caspase 8 expression effectively blocked the apoptosis induced by ORF111L overexpression. Significantly, ORF111L overexpression resulted in much stronger effect on caspase 8 and caspase 3 upregulation compared to zebrafish TRAF2. This is the first report of a viral protein similar to TRAF that interacts with TRADD and induces caspase 8-mediated apoptosis, which may provide novel insights into the pathogenesis of ISKNV infection.  相似文献   

9.
We investigated the role of a teleostean interferon regulatory factor-1 (IRF-1) in the regulation of the fish immune system using Japanese flounder, Paralichthys olivaceus, as a model. Fish were intramuscularly vaccinated with a recombinant plasmid expressing the Japanese flounder IRF-1 (JF IRF-1) under the control of the cytomegalovirus immediate/early enhancer (CMV) promoter and were sampled at different days post-immunization. Peripheral blood leukocytes (PBLs) obtained from the JF IRF-1-vaccinated fish during the early stages post-vaccination had significantly elevated levels of nitric oxide (NO) and higher acid phosphatase (AP) activity compared with the control groups. Moreover, supernatants of PBLs obtained from the IRF-1-vaccinated fish contained cytokine-like substances as shown by their protective effect against hirame rhabdovirus (HIRRV) and viral hemorrhagic septicemia virus (VHSV) in two cell lines, hirame natural embryo (HINAE) cell line and epithelial papillosum of cyprini (EPC) cell line. Relative expression of an anti-viral gene, Mx was highest at the 7th day post-vaccination. Co-injection of JF IRF-1 with a DNA vaccine encoding the major capsid protein (MCP) gene of red seabream iridovirus (RSIV) resulted in elevated serum neutralization antibodies but was not significantly different from that in the fish vaccinated with the DNA vaccine alone. These results suggest that the JF IRF-1 modulates the early immune response in fish and is a potential candidate as genetic adjuvant for vaccination.  相似文献   

10.
Infectious spleen and kidney necrosis virus (ISKNV), the type species of the genus Megalocytivirus in the family Iridoviridae, causes severe damage to mandarin fish cultures in China. Little is known about the proteins of ISKNV virions. In this study, a total of 38 ISKNV virion-associated proteins were identified by four different workflows with systematic and comprehensive proteomic approaches. Among the 38 identified proteins, 21 proteins were identified by the gel-based workflows (one-dimensional [1-D] and two-dimensional [2-D] gel electrophoresis). Fifteen proteins were identified by 1-D gel electrophoresis, and 16 proteins were identified by 2-D gel electrophoresis, with 10 proteins identified by both methods. Another 17 proteins were identified only by liquid chromatography (LC)-based workflows (LC-matrix-assisted laser desorption ionization [MALDI] and linear trap quadrupole [LTQ]-Orbitrap). Among these 17 LC-identified proteins, 5 proteins were identified uniquely by the LC-MALDI workflow, whereas another 6 proteins were identified only by the LTQ-Orbitrap workflow. These results underscore the importance of incorporation of multiple approaches in identification of viral proteins. Based on viral genomic sequence, genes encoding these 38 viral proteins were cloned and expressed in vitro. Antibodies were produced against these 38 proteins to confirm the ISKNV structural proteins by Western blotting. Of the newly identified proteins, ORF 056L and ORF 118L were identified and confirmed as two novel viral envelope proteins by Western blotting and immunoelectron microscopy (IEM). The ISKNV proteome reported here is currently the only characterized megalocytivirus proteome. The systematic and comprehensive identification of ISKNV structural proteins and their localizations in this study will facilitate future studies of the ISKNV assembly process and infection mechanism.  相似文献   

11.

Background

Envelope protein 53R was identified from frog Rana grylio virus (RGV), a member of the family Iridoviridae, and it plays an important role in the virus assembly. Although inhibition of iridovirus major capsid protein (MCP) by small hairpin RNAs (shRNAs) has been shown to cause resistance to viral infection in vitro, RNA interference (RNAi) to inhibit aquatic animal virus envelope protein gene product has not been reported.

Methodology

We devised artificial microRNAs (amiRNAs) that target a viral envelope protein gene RGV 53R. By incorporating sequences encoding amiRNAs specific to 53R of RGV into pre-miRNA155 (pSM155) vectors, which use the backbone of natural miR-155 sequence and could intracellularly express 53R-targeted pre-amiRNAs. The pre-amiRNAs could be processed by the RNase III-like enzyme Dicer into 21–25 nt amiRNAs (amiR-53Rs) in fish cell lines. The levels of 53R expression were analyzed through real-time PCR and RGV virions assembly were observed by electronic microscopy in fish cells transfected with or without amiR-53Rs at 72 h of RGV infection.

Conclusion/Significance

The results argue that viral envelope protein RGV 53R can be silenced and the virions assembly was deficient by amiR-53R-1, and further identified the first amiRNA of envelope protein gene from iridovirus that was able to cause resistance to virus infection in fish cells. The data demonstrate that the viral infection is efficiently suppressed (58%) by amiR-53R-1 targeting positon 36–57 of RGV 53R. Moreover, electron microscopic observations revealed virion assembly defect or reduced virions assembly capacity was closely correlated to expression of amiR-53R-1. Based on real time PCR of the Mx gene, we found no evidence of activation of IFN by amiR-53R-1.  相似文献   

12.
In 2003, 13 isolates of iridovirus were obtained from cultured flounders Paralichthys olivaceus during epizootics in Korea. The full open reading frames (ORFs) encoding the major capsid protein (MCP) (1362 bp) from the 13 flounder iridoviruses (FLIVs) were sequenced and the deduced amino acid sequences were phylogenetically analyzed. Phylogenetic analysis of the MCP revealed that all 13 FLIVs were the same species as rock bream iridovirus (RBIV), red sea bream iridovirus (RSIV), and infectious spleen and kidney necrosis virus (ISKNV), and were grouped into an unknown genus which was different from the 2 genera known to infect fish, Ranavirus and Lymphocystivirus. This is the first report on the isolation and phylogenetic analysis of the iridovirus of unknown genus from flounders during epizootics.  相似文献   

13.
The cytomegalovirus (CMV) assembly protein precursor (pAP) interacts with the major capsid protein (MCP), and this interaction is required for nuclear translocation of the MCP, which otherwise remains in the cytoplasm of transfected cells (L. J. Wood et al., J. Virol. 71:179–190, 1997). We have interpreted this finding to indicate that the CMV MCP lacks its own nuclear localization signal (NLS) and utilizes the pAP as an NLS-bearing escort into the nucleus. The CMV pAP amino acid sequence has two clusters of basic residues (e.g., KRRRER [NLS1] and KARKRLK [NLS2], for simian CMV) that resemble the simian virus 40 large-T-antigen NLS (D. Kalderon et al., Cell 39:499–509, 1984) and one of these (NLS1) has a counterpart in the pAP homologs of other herpesviruses. The work described here establishes that NLS1 and NLS2 are mutually independent NLS that can act (i) in cis to translocate pAP and the related proteinase precursor (pNP1) into the nucleus and (ii) in trans to transport MCP into the nucleus. By using combinations of NLS mutants and carboxy-terminal deletion constructs, we demonstrated a self-interaction of pAP and cytoplasmic interactions of pAP with pNP1 and of pNP1 with itself. The relevance of these findings to early steps in capsid assembly, the mechanism of MCP nuclear transport, and the possible cytoplasmic formation of protocapsomeric substructures is discussed.  相似文献   

14.
Two cellular proteins, membrane cofactor protein (MCP) and moesin, were reported recently to be functionally associated with the initiation of a measles virus infection. We have analyzed the interaction of measles virus with cell surface proteins, using an overlay binding assay with cellular proteins immobilized on nitrocellulose. Among surface-biotinylated proteins from a human rectal tumor cell line (HRT), measles virus was able to bind only to a 67-kDa protein that was identified as MCP. The virus recognized different isoforms of MCP expressed from human (HRT and HeLa) and simian (Vero) cell lines. The binding of measles virus to MCP was abolished after cleavage of the disulfide bonds by reducing agents as well as after enzymatic release of N-linked oligosaccharides. By contrast, removal of sialic acid or O-linked oligosaccharides did not affect the recognition of MCP measles virus. These data indicate that the receptor determinant of MCP is dependent on a conformation of the protein that is maintained by disulfide bonds and N-glycans present in the complement binding domains. Our results are consistent with a role of MCP as primary attachment site for measles virus in the initial stage of an infection. The functional relationship between MCP and moesin in a measles virus infection is discussed.  相似文献   

15.
The mucosal events of HIV transmission have been extensively studied, but the role of infected cells present in the genital and rectal secretions, and in the semen, in particular, remains a matter of debate. As a prerequisite to a thorough in vivo investigation of the early transmission events through infected cells, we characterized in detail by multi-parameter flow cytometry the changes in macaque seminal leukocytes during SIVmac251 infection, focusing on T cells, macrophages and dendritic cells. Using immunocytofluorescence targeting SIV proteins and real-time quantitative PCR targeting SIV DNA, we investigated the nature of the infected cells on sorted semen leukocytes from macaques at different stages of infection. Finally, we cocultured semen CD4+ T cells and macrophages with a cell line permissive to SIV infection to assess their infectivity in vitro. We found that primary infection induced strong local inflammation, which was associated with an increase in the number of leukocytes in semen, both factors having the potential to favor cell-associated virus transmission. Semen CD4+ T cells and macrophages were productively infected at all stages of infection and were infectious in vitro. Lymphocytes had a mucosal phenotype and expressed activation (CD69 & HLA-DR) and migration (CCR5, CXCR4, LFA-1) markers. CD69 expression was increased in semen T cells by SIV infection, at all stages of infection. Macrophages predominated at all stages and expressed CD4, CCR5, MAC-1 and LFA-1. Altogether, we demonstrated that semen contains the two major SIV-target cells (CD4+ T cells and macrophages). Both cell types can be productively infected at all stages of SIV infection and are endowed with markers that may facilitate transmission of infection during sexual exposure.  相似文献   

16.
17.
18.
Ranaviruses (family Iridoviridae) are a growing threat to fish and amphibian populations worldwide. The immune response to ranavirus infection has been studied in amphibians, but little is known about the responses elicited in piscine hosts. In this study, the immune response and apoptosis induced by ranaviruses were investigated in fish epithelial cells. Epithelioma papulosum cyprini (EPC) cells were infected with four different viral isolates: epizootic haematopoietic necrosis virus (EHNV), frog virus 3 (FV3), European catfish virus (ECV) and doctor fish virus (DFV). Quantitative real-time PCR (qPCR) assays were developed to measure the mRNA expression of immune response genes during ranavirus infection. The target genes included tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β), β2-microglobulin (β2M), interleukin-10 (IL-10) and transforming growth factor β (TGF-β). All ranaviruses elicited changes in immune gene expression. EHNV and FV3 caused a strong pro-inflammatory response with an increase in the expression of both IL-1β and TNF-α, whereas ECV and DFV evoked transient up-regulation of regulatory cytokine TGF-β. Additionally, all viral isolates induced increased β2M expression as well as apoptosis in the EPC cells. Our results indicate that epithelial cells can serve as an in vitro model for studying the mechanisms of immune response in the piscine host in the first stages of ranavirus infection.  相似文献   

19.
两种鳜病毒的共感染现象及引起感染细胞的超微变化   总被引:2,自引:1,他引:1  
借助细胞培养和电镜技术,揭示了鳜球形病毒(Siniperca chuatsi spherical virus,SCSV)与鳜弹状病毒(Siniperca chuatsi rhabdovirus,SCRV)在草鱼鳍细胞(Grass carp fins,GCF)中共感染的现象。在筛选到敏感鱼类细胞系和建立了 鳜病毒体外增殖系统的基础上,取息典型病毒感染出血症的鳜组织,制备组织悬液,接种到GCF细胞中传代培养, 在攻毒后间隔不同时间收集细胞,对攻毒细胞的超薄切片进行电镜观察。揭示两种形态的鳜病毒可在同一个GCF 细胞中增殖,并描述和分析了病毒复制引起感染细胞的超微病变。本研究结果有助于阐明鱼类重要病毒病害的发 生过程及致病机理。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号