首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.

Background

Oxidative stress increases the cytosolic content of calcium in the cytoplasm through a combination of effects on calcium pumps, exchangers, channels and binding proteins. In this study, oxidative stress was produced by exposure to tert-butyl hydroperoxide (tBHP); cell viability was assessed using a dye reduction assay; receptor binding was characterized using [3H]N-methylscopolamine ([3H]MS); and cytosolic and luminal endoplasmic reticulum (ER) calcium concentrations ([Ca2+]i and [Ca2+]L, respectively) were measured by fluorescent imaging.

Results

Activation of M3 muscarinic receptors induced a biphasic increase in [Ca2+]i: an initial, inositol trisphosphate (IP3)-mediated release of Ca2+ from endoplasmic reticulum (ER) stores followed by a sustained phase of Ca2+ entry (i.e., store-operated calcium entry; SOCE). Under non-cytotoxic conditions, tBHP increased resting [Ca2+]i; a 90 minute exposure to tBHP (0.5-10 mM ) increased [Ca2+]i from 26 to up to 127 nM and decreased [Ca2+]L by 55%. The initial response to 10 μM carbamylcholine was depressed by tBHP in the absence, but not the presence, of extracellular calcium. SOCE, however, was depressed in both the presence and absence of extracellular calcium. Acute exposure to tBHP did not block calcium influx through open SOCE channels. Activation of SOCE following thapsigargin-induced depletion of ER calcium was depressed by tBHP exposure. In calcium-free media, tBHP depressed both SOCE and the extent of thapsigargin-induced release of Ca2+ from the ER. M3 receptor binding parameters (ligand affinity, guanine nucleotide sensitivity, allosteric modulation) were not affected by exposure to tBHP.

Conclusions

Oxidative stress induced by tBHP affected several aspects of M3 receptor signaling pathway in CHO cells, including resting [Ca2+]i, [Ca2+]L, IP3 receptor mediated release of calcium from the ER, and calcium entry through the SOCE. tBHP had little effect on M3 receptor binding or G protein coupling. Thus, oxidative stress affects multiple aspects of calcium homeostasis and calcium dependent signaling.  相似文献   

2.
Interleukin-31 (IL-31) is a T helper type 2 cell-derived cytokine tightly associated with inflammatory skin disorders. IL-31-induced signaling is mediated by a receptor complex composed of oncostatin M receptor β and the cytokine-specific receptor subunit IL-31Rα, of which there are several isoforms. The latter can be classified as long or short isoforms with respect to their intracellular domain. At present, the signaling capabilities of the different isoforms remain inchoately understood, and potential mechanisms involved in negative regulation of IL-31Rα signaling have so far not been studied in detail. Here, we show that both the long and short isoforms of IL-31Rα are capable of inducing STAT signaling. However, the presence of a functional JAK-binding box within IL-31Rα is an essential prerequisite for functional IL-31-mediated STAT3 signaling. Moreover, both the long and short isoforms require oncostatin M receptor β for their activity. We also show that IL-31 induces expression of four suppressor of cytokine signaling family members and provide evidence that SOCS3 acts as a potent feedback inhibitor of IL-31-induced signaling. Taken together, this study identifies crucial requirements for IL-31 signaling and shows its counter-regulation by SOCS3.  相似文献   

3.
The Orai1 Ca2+ permeable ion channel is an important component of store operated Ca2+ entry (SOCE) in cells. It’s over-expression in basal molecular subtype breast cancers has been linked with poor prognosis, making it a potential target for drug development. We pharmacologically characterised a number of reported inhibitors of SOCE in MDA-MB-231 breast cancer cells using a convenient Fluorescence Imaging Plate Reader (FLIPR) assay, and show that the rank order of their potencies in this assay is the same as those reported in a wide range of published assays. The assay was also used in a screening project seeking novel inhibitors. Following a broad literature survey of classes of calcium channel inhibitors we used simplified ligand structures to query the ZINC on-line database, and following two iterations of refinement selected a novel Orai1-selective dichlorophenyltriazole hit compound. Analogues of this were synthesized and evaluated in the FLIPR assay to develop structure–activity relationships (SAR) for the three domains of the hit; triazole (head), dichlorophenyl (body) and substituted phenyl (tail). For this series, the results suggested the need for a lipophilic tail domain and an out-of-plane twist between the body and tail domains.  相似文献   

4.
Two α subunits of the gabaa receptor in rat brain have been identified by molecular cloning. The deduced polypeptide sequences share major characteristics with other chemically gated ion channel proteins. One polypeptide represents the rat homologue of the α3 subunit previously cloned from bovine brain [14], while the other polypeptide is a yet unknown subunit, termed α5. When coexpressed with the β1 subunit in Xenopus oocytes the receptors containing the α5 subunit revealed a higher sensitivity to GABA than receptors expressed from α1 + β1 subunits or α3 + β1 subunits (Ka = 1 μM, 13 μM and 14 μM, respectively). The α5 subunit was expressed only in a few brain areas such as cerebral cortex, hippocampal formation and olfactory bulb granular layer as shown by in situ hybridization histochemistry. Since the mRNA of the α5 subunit was colocalized with the αl and α3 subunits only in cerebral cortex and in the hippocampal formation the α5 subunit may be part of distinct GABAA receptors in neuronal populations within the olfactory bulb.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) release efficiency is directed by late (L) domain motifs in the viral structural precursor polyprotein Gag, which serve as links to the ESCRT (endosomal sorting complex required for transport) machinery. Linkage is normally through binding of Tsg101, an ESCRT-1 component, to the P7TAP motif in the p6 region of Gag. In its absence, budding is directed by binding of Alix, an ESCRT adaptor protein, to the LY36PXnL motif in Gag. We recently showed that budding requires activation of the inositol 1,4,5-triphosphate receptor (IP3R), a protein that “gates” Ca2+ release from intracellular stores, triggers Ca2+ cell influx and thereby functions as a major regulator of Ca2+ signaling. In the present study, we determined whether the L domain links Gag to Ca2+ signaling machinery. Depletion of IP3R and inactivation of phospholipase C (PLC) inhibited budding whether or not Tsg101 was bound to Gag. PLC hydrolysis of phosphatidylinositol-(4,5)-bisphosphate generates inositol (1,4,5)-triphosphate, the ligand that activates IP3R. However, with Tsg101 bound, Gag release was independent of Gq-mediated activation of PLC, and budding was readily enhanced by pharmacological stimulation of PLC. Moreover, IP3R was redistributed to the cell periphery and cytosolic Ca2+ was elevated, events indicative of induction of Ca2+ signaling. The results suggest that L domain function, ESCRT machinery and Ca2+ signaling are linked events in Gag release.  相似文献   

6.
Current knowledge suggests that cell movement in the eukaryotic slime mold Dictyostelium discoideum is mediated by different signaling pathways involving a number of redundant components. Our previous research has identified a specific motility-enhancing function for epidermal growth factor-like (EGFL) repeats in Dictyostelium, specifically for the EGFL repeats of cyrA, a matricellular, calmodulin (CaM)-binding protein in Dictyostelium. Using mutants of cAMP signaling (carA, carC, gpaB, gpbA), the endogenous calcium (Ca2+) release inhibitor TMB-8, the CaM antagonist W-7, and a radial motility bioassay, we show that DdEGFL1, a synthetic peptide whose sequence is obtained from the first EGFL repeat of cyrA, functions independently of the cAMP-mediated signaling pathways to enhance cell motility through a mechanism involving Ca2+ signaling, CaM, and RasG. We show that DdEGFL1 increases the amounts of polymeric myosin II heavy chain and actin in the cytoskeleton by 24.1 ± 10.7% and 25.9 ± 2.1% respectively and demonstrate a link between Ca2+/CaM signaling and cytoskeletal dynamics. Finally, our findings suggest that carA and carC mediate a brake mechanism during chemotaxis since DdEGFL1 enhanced the movement of carA/carC cells by 844 ± 136% compared to only 106 ± 6% for parental DH1 cells. Based on our data, this signaling pathway also appears to involve the G-protein β subunit, RasC, RasGEFA, and protein kinase B. Together, our research provides insight into the functionality of EGFL repeats in Dictyostelium and the signaling pathways regulating cell movement in this model organism. It also identifies several mechanistic components of DdEGFL1-enhanced cell movement, which may ultimately provide a model system for understanding EGFL repeat function in higher organisms.  相似文献   

7.
Resveratrol (RES) is a putative chemotherapeutic naturally found in grapes, peanuts, and Japanese knotweed. Previous studies demonstrate that RES modulates calcium signaling as part of its chemotherapeutic activity. In this study, we determined the chemotherapeutic activity of three RES esters that have been modified at the 4’ hydroxyl by the addition of pivalate, butyrate, and isobutyrate. All of the RES derivatives disrupted the calcium signaling in prostate cancer cells more than the parent compound, RES. Further, we demonstrate that the RES derivatives may disrupt the calcium homeostasis by activating calcium release from the endoplasmic reticulum and inhibiting plasma membrane Ca2+-ATPase. The pivalated and butyrated RES derivatives decreased cell viability significantly more than RES. Because pivalated and butyrated RES are more effective than RES at targeting calcium signaling pathways, pivalated and butyrated RES may serve as more effective chemotherapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号