首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Objectives

Intra-individual spatial overlap analysis of tumor volumes assessed by MRI, the amino acid PET tracer [18F]-FET and the nucleoside PET tracer [18F]-FLT in high-grade gliomas (HGG).

Methods

MRI, [18F]-FET and [18F]-FLT PET data sets were retrospectively analyzed in 23 HGG patients. Morphologic tumor volumes on MRI (post-contrast T1 (cT1) and T2 images) were calculated using a semi-automatic image segmentation method. Metabolic tumor volumes for [18F]-FET and [18F]-FLT PETs were determined by image segmentation using a threshold-based volume of interest analysis. After co-registration with MRI the morphologic and metabolic tumor volumes were compared on an intra-individual basis in order to estimate spatial overlaps using the Spearman''s rank correlation coefficient and the Mann-Whitney U test.

Results

[18F]-FLT uptake was negative in tumors with no or only moderate contrast enhancement on MRI, detecting only 21 of 23 (91%) HGG. In addition, [18F]-FLT uptake was mainly restricted to cT1 tumor areas on MRI and [18F]-FLT volumes strongly correlated with cT1 volumes (r = 0.841, p<0.001). In contrast, [18F]-FET PET detected 22 of 23 (96%) HGG. [18F]-FET uptake beyond areas of cT1 was found in 61% of cases and [18F]-FET volumes showed only a moderate correlation with cT1 volumes (r = 0.573, p<0.001). Metabolic tumor volumes beyond cT1 tumor areas were significantly larger for [18F]-FET compared to [18F]-FLT tracer uptake (8.3 vs. 2.7 cm3, p<0.001).

Conclusion

In HGG [18F]-FET but not [18F]-FLT PET was able to detect metabolic active tumor tissue beyond contrast enhancing tumor on MRI. In contrast to [18F]-FET, blood-brain barrier breakdown seems to be a prerequisite for [18F]-FLT tracer uptake.  相似文献   

2.
c-MET-positive NSCLC is an important subtype accounting for about 5%~22% of lung cancer. NSCLC patients with activating c-MET are intensively sensitive to c-MET selective receptor tyrosine kinase (RTK) inhibitors, so we aimed to develop a specific PET probe targeting to c-MET-positive NSCLC for potential patients screened by PET/CT. Herein, PET tracer 18F-radiolabeled crizotinib derivative ([18F]FPC) was successfully achieved through a simple one-step 18F-labeling method. [18F]FPC PET imaging on c-MET-positive (as well as blocking group) and negative NSCLC models were further evaluated, and results showed that [18F]FPC was effective as a PET imaging probe that targeted c-MET-positive tumor. Therefore, [18F]FPC could be a potential PET imaging probe for NSCLC tumor which was sensitive to c-MET-TKIs. By virtue of this property, it will benefit NSCLC patients for c-MET-TKI treatment.  相似文献   

3.
Despite advances in the field of nuclear medicine, the imaging of bacterial infections has remained a challenge. The existing reagents suffer from poor sensitivity and specificity. In this study we investigate the potential of a novel PET (positron emission tomography) tracer that overcomes these limitations.

Methods

6-[18F]-fluoromaltose was synthesized. Its behavior in vitro was evaluated in bacterial and mammalian cultures. Detailed pharmacokinetic and biodistribution profiles for the tracer were obtained from a murine model.

Results

6-[18F]-fluoromaltose is taken up by multiple strains of pathogenic bacteria. It is not taken up by mammalian cancer cell lines. 6-[18F]-fluoromaltose is retained in infected muscles in a murine model of bacterial myositis. It does not accumulate in inflamed tissue.

Conclusion

We have shown that 6-[18F]-fluoromaltose can be used to image bacterial infection in vivo with high specificity. We believe that this class of agents will have a significant impact on the clinical management of patients.  相似文献   

4.
Positron emission tomography (PET) herpes simplex virus thymidine kinase (HSV-tk) gene reporter probes 9-[(3-[(18)F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([(18)F]FHPG) and 9-(4-[(18)F]fluoro-3-hydroxymethylbutyl)guanine ([(18)F]FHBG) were prepared by nucleophilic substitution of the appropriate tosylated precursors with [(18)F]KF/Kryptofix 2.2.2 followed by a quick deprotection reaction and purification with a simplified dual Silica Sep-Pak solid-phase extraction (SPE) method in 15-30% radiochemical yield.  相似文献   

5.
In the 21st century, the incidence and mortality of cancer, one of the most challenging diseases in the world, have rapidly increased. The purpose of this study was to develop 2-(2-[18F]fluoroethoxy)ethyl 4-methylbenzenesulfonate ([18F]FEM) as a positron emission tomography (PET) agent for tumor imaging. In this study, [18F]FEM was synthesized with a good radiochemical yield (45.4 ± 5.8%), high specific radioactivity (over 25 GBq/μmol), and commendable radiochemical purity (over 99%). The octanol/water partition coefficient of [18F]FEM was 1.44 ± 0.04. The probe demonstrated good stability in vitro (phosphate-buffered saline (PBS) and mouse serum (MS)), and binding specificity to five different tumor cell lines (A549, PC-3, HCC827, U87, and MDA-MB-231). PET imaging of tumor-bearing mice showed that [18F]FEM specifically accumulated at the tumor site of the five different tumor cell lines. The average tumor-to-muscle (T/M) ratio was over 2, and the maximum T/M values reached about 3.5. The biodistribution and dynamic PET imaging showed that most probes were metabolized by the liver, whereas a small part was metabolized by the kidney. Moreover, dynamic brain images and quantitative data showed [18F]FEM can quickly cross the blood brain barrier (BBB) and quickly fade out, thereby suggesting it may be a promising candidate probe for the imaging of brain tumors. The presented results demonstrated that [18F]FEM is a promising probe for tumor PET imaging.  相似文献   

6.
Combined targeting of the MAPK and PI3K signalling pathways in cancer may be necessary for optimal therapeutic activity. To support clinical studies of combination therapy, 3′-deoxy-3′-[18F]-fluorothymidine ([18F]-FLT) uptake measured by Positron Emission Tomography (PET) was evaluated as a non-invasive surrogate response biomarker in pre-clinical models. The in vivo anti-tumour efficacy and PK-PD properties of the MEK inhibitor PD 0325901 and the PI3K inhibitor GDC-0941, alone and in combination, were evaluated in HCT116 and HT29 human colorectal cancer xenograft tumour-bearing mice, and [18F]-FLT PET investigated in mice bearing HCT116 xenografts. Dual targeting of PI3K and MEK induced marked tumour growth inhibition in vivo, and enhanced anti-tumour activity was predicted by [18F]-FLT PET scanning after 2 days of treatment. Pharmacodynamic analyses using the combination of the PI3K inhibitor GDC-0941 and the MEK inhibitor PD 0325901 revealed that increased efficacy is associated with an enhanced inhibition of the phosphorylation of ERK1/2, S6 and 4EBP1, compared to that observed with either single agent, and maintained inhibition of AKT phosphorylation. Pharmacokinetic studies indicated that there was no marked PK interaction between the two drugs. Together these results indicate that the combination of PI3K and MEK inhibitors can result in significant efficacy, and demonstrate for the first time that [18F]-FLT PET can be correlated to the improved efficacy of combined PI3K and MEK inhibitor treatment.  相似文献   

7.

Introduction

APO866 is a new anti-tumor compound inhibiting nicotinamide phosphoribosyltransferase (NAMPT). APO866 has an anti-tumor effect in several pre-clinical tumor models and is currently in several clinical phase II studies. 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) is a tracer used to assess cell proliferation in vivo. The aim of this study was non-invasively to study effect of APO866 treatment on [18F]FLT and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake.

Methods

In vivo uptake of [18F]FLT and [18F]FDG in human ovary cancer xenografts in mice (A2780) was studied at various time points after APO866 treatment. Baseline [18F]FLT or [18F]FDG scans were made before treatment and repeated after 24 hours, 48 hours and 7 days. Tumor volume was followed with computed tomography (CT). Tracer uptake was quantified using small animal PET/CT. One hour after iv injection of tracer, static PET scans were performed. Imaging results were compared with Ki67 immunohistochemistry.

Results

Tumors treated with APO866 had volumes that were 114% (24 h), 128% (48 h) and 130% (Day 7) relative to baseline volumes at Day 0. In the control group tumor volumes were 118% (24 h), 145% (48 h) and 339% (Day 7) relative to baseline volumes Day 0. Tumor volume between the treatment and control group was significantly different at Day 7 (P = 0.001). Compared to baseline, [18F]FLT SUVmax was significantly different at 24 h (P<0.001), 48 h (P<0.001) and Day 7 (P<0.001) in the APO866 group. Compared to baseline, [18F]FDG SUVmax was significantly different at Day 7 (P = 0.005) in the APO866 group.

Conclusions

APO866 treatment caused a significant decrease in [18F]FLT uptake 24 and 48 hours after treatment initiation. The early reductions in tumor cell proliferation preceded decrease in tumor volume. The results show the possibility to use [18F]FLT and [18F]FDG to image treatment effect early following treatment with APO866 in future clinical studies.  相似文献   

8.
Approximately 80-90% of prostate cancers are androgen dependent at initial diagnosis. The androgen receptor (AR) is present in most advanced prostate cancer specimens and is believed to have a critical role in its development. Today, treatment of prostate cancer is done by inhibition of AR using antiandrogens such as flutamide (pro-drug of hydroxyflutamide), nilutamide, and bicalutamide. However, there is currently no noninvasive imaging modalities to detect, guide, and monitor specific treatment of AR-positive prostate cancer. (R)-3-Bromo-N-(4-fluoro-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-propanamide [18F]-1 and N-(4-fluoro-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methylpropanamide [18F]-2, derivatives of hydroxyflutamide, were synthesized as a fluorine-containing imaging agent candidates. A three-step fluorine-18 radiosynthesis route was developed, and the compounds were successfully labeled with a 10+/-3% decay corrected radiochemical yield, 95% radiochemical purity, and a specific activity of 1500+/-200 Ci/mmol end of bombardment (n = 10). These labeled biprobes not only may enable for the future quantitative molecular imaging of AR-positive prostate cancer using positron emission tomography but may also allow for image-guided treatment of prostate cancer.  相似文献   

9.
Automated voxel-based or pre-defined volume-of-interest (VOI) analysis of small-animal PET data in mice is necessary for optimal information usage as the number of available resolution elements is limited. We have mapped metabolic ([18F]FDG) and dopamine transporter ([18F]FECT) small-animal PET data onto a 3D Magnetic Resonance Microscopy (MRM) mouse brain template and aligned them in space to the Paxinos co-ordinate system. In this way, ligand-specific templates for sensitive analysis and accurate anatomical localization were created. Next, using a pre-defined VOI approach, test-retest and intersubject variability of various quantification methods were evaluated. Also, the feasibility of mouse brain statistical parametric mapping (SPM) was explored for [18F]FDG and [18F]FECT imaging of 6-hydroxydopamine-lesioned (6-OHDA) mice.

Methods

Twenty-three adult C57BL6 mice were scanned with [18F]FDG and [18F]FECT. Registrations and affine spatial normalizations were performed using SPM8. [18F]FDG data were quantified using (1) an image-derived-input function obtained from the liver (cMRglc), using (2) standardized uptake values (SUVglc) corrected for blood glucose levels and by (3) normalizing counts to the whole-brain uptake. Parametric [18F]FECT binding images were constructed by reference to the cerebellum. Registration accuracy was determined using random simulated misalignments and vectorial mismatch determination.

Results

Registration accuracy was between 0.21–1.11 mm. Regional intersubject variabilities of cMRglc ranged from 15.4% to 19.2%, while test-retest values were between 5.0% and 13.0%. For [18F]FECT uptake in the caudate-putamen, these values were 13.0% and 10.3%, respectively. Regional values of cMRglc positively correlated to SUVglc measured within the 45–60 min time frame (spearman r = 0.71). Next, SPM analysis of 6-OHDA-lesioned mice showed hypometabolism in the bilateral caudate-putamen and cerebellum, and an unilateral striatal decrease in DAT availability.

Conclusion

MRM-based small-animal PET templates facilitate accurate assessment and spatial localization of mouse brain function using VOI or voxel-based analysis. Regional intersubject- and test-retest variations indicate that for these targets accuracy comparable to humans can be achieved.  相似文献   

10.

Background

3′-deoxy-3′-[18F]fluorothymidine (18F-FLT) is a tracer used to assess cell proliferation in vivo. The aim of the study was to use 18F-FLT positron emission tomography (PET) to study treatment responses to a new anti-cancer compound. To do so, we studied early anti-proliferative effects of the experimental chemotherapy Top216 non-invasively by PET.

Methodology/Principal Findings

In vivo uptake of 18F-FLT in human ovary cancer xenografts in mice (A2780) was studied at various time points after Top216 treatment (50 mg/kg i.v. at 0 and 48 hours) was initiated. Baseline 18F-FLT scans were made before either Top216 (n = 7–10) or vehicle (n = 5–7) was injected and repeated after 2 and 6 hours and 1 and 5 days of treatment. A parallel study was made with 2′-deoxy-2′-[18F]fluoro-D-glucose (18F-FDG) (n = 8). Tracer uptake was quantified using small animal PET/CT. Imaging results were validated by tumor volume changes and gene-expression of Ki67 and TK1. Top216 (50 mg/kg 0 and 48 hours) inhibited the growth of the A2780 tumor compared to the control group (P<0.001). 18F-FLT uptake decreased significantly at 2 hours (−52%; P<0.001), 6 hours (−49%; P = 0.002) and Day 1 (−47%; P<0.001) after Top216 treatment. At Day 5 18F-FLT uptake was comparable to uptake in the control group. Uptake of 18F-FLT was unchanged in the control group during the experiment. In the treatment group, uptake of 18F-FDG was significantly decreased at 6 hours (−21%; P = 0.003), Day 1 (−29%; P<0.001) and Day 5 (−19%; P = 0.05) compared to baseline.

Conclusions/Significance

One injection with Top216 initiated a fast and significant decrease in cell-proliferation assessable by 18F-FLT after 2 hours. The early reductions in tumor cell proliferation preceded changes in tumor size. Our data indicate that 18F-FLT PET is promising for the early non-invasive assessment of chemotherapy effects in both drug development and for tailoring therapy in patients.  相似文献   

11.
The potential of 6-deoxy-6-[18F]fluoro-d-galactose (6-[18F]FdGal) as an in vivo tracer for studying galactose metabolism in tumors and liver was investigated. High uptake and rapid clearance of the radioactivity were observed in many organs of mice after i.v. injection of the tracer. d-Galactose loading did not affect liver uptake. Three experimental tumors showed a slightly higher uptake than other tissues, and rat brain tumor was clearly visualized by autoradiography. However, the radioactivity in tumors decreased rapidly. In the liver, a significant amount of the tracer was found in a galactonate form, while this oxidation was a minor metabolic pathway in the tumors. In both tumor and liver tissues, small amounts of the tracer were incorporated into macromolecular glycoconjugate via phosphate and uridylate forms as intermediate precursors. These results indicate that 6-[18F]FdGal is not suitable for studying galactose metabolism in vivo because of the low affinity of the tracer for the metabolism.  相似文献   

12.
Lang L  Li W  Guo N  Ma Y  Zhu L  Kiesewetter DO  Shen B  Niu G  Chen X 《Bioconjugate chemistry》2011,22(12):2415-2422
[(18)F]FPPRGD2, an F-18 labeled dimeric cyclic RGDyK peptide, has favorable properties for PET imaging of angiogenesis by targeting the α(v)β(3) integrin receptor. This radiotracer has been approved by the FDA for use in clinical trials. However, the time-consuming multiple-step synthetic procedure required for its preparation may hinder the widespread usage of this tracer. The recent development of a method using an F-18 fluoride-aluminum complex to radiolabel peptides provides a strategy for simplifying the labeling procedure. On the other hand, the easy-to-prepare [(68)Ga]-labeled NOTA-RGD derivatives have also been reported to have promising properties for imaging α(v)β(3) integrin receptors. The purpose of this study was to prepare [(18)F]FPPRGD2 [corrected] , [(18)F]FAl-NOTA-PRGD2, and [(68)Ga]Ga-NOTA-PRGD2 and to compare their pharmacokinetics and tumor imaging properties using small animal PET. All three compounds showed rapid and high tracer uptake in U87MG tumors with high target-to-background ratios. The uptake in the liver, kidneys, and muscle were similar for all three tracers, and they all showed predominant renal clearance. In conclusion, [(18)F]FAl-NOTA-PRGD2 and [(68)Ga]Ga-NOTA-PRGD2 have imaging properties and pharmacokinetics comparable to those of [(18)F]FPPRGD2. Considering their ease of preparation and good imaging qualities, [(18)F]FAl-NOTA-PRGD2 and [(68)Ga]NOTA-PRGD2 are promising alternatives to [(18)F]FPPRGD2 for PET imaging of tumor α(v)β(3) integrin expression.  相似文献   

13.
《Médecine Nucléaire》2023,47(4):193-199
Aim of the studyIn this study, we aimed to determine the factors affecting increased glucose metabolism, which is one of the dedifferentiation mechanisms, by using [18F]FDG and [68Ga]Ga-PSMA PET/CT in patients with castration-resistant prostate cancer (CRPC).Materials and methodNinety-three patients with CRPC were included in the study. Gleason score (GS), and total PSA and free PSA levels of the patients were recorded. Patient- and organ-based evaluations were performed according to the lesion uptakes as follows: score 0: PSMA (-) FDG (-), score 1: PSMA (+) FDG (-), score 2: PSMA (+) FDG (+) (FDG < PSMA), score 3: PSMA (+) FDG (+) (FDG = PSMA), score 4: PSMA (+) FDG (+) (FDG > PSMA), and score 5: PSMA (-) FDG (+). scores 1 and 2 were classified as group 1, and scores 3 to 5 were classified as group 2.ResultsThe median age of our patients was 70 (51–88) years. Eighty-eight patients (94.6%) were PSMA-positive, 78 patients (83.8%) were FDG-positive, and 89 patients (95.6%) were or PSMA or FDG positive. When the two groups were compared in terms of patient-based parameters, the median age and GS were found to be significantly higher in group 2. ROC analyses revealed that age and GS were significant in predicting group 2.ConclusionSince glucose metabolism can increase in CRPC patients with advanced age and high GS, we recommend combining [18F]FDG PET/CT with [68Ga]Ga-PSMA PET/CT in routine clinical practice in order to identify this patient subset and refer them to additional therapies.  相似文献   

14.
6-[18F]Fluoro-l-dopa and 6-[18F]fluorodopamine are promising PET imaging agents for visualizing cerebral dopaminergic centers and cardiac sympathetic innervation and function. Administration to humans requires a means to determine the purity before injection. We describe such a method using HPLC with u.v. and radioactivity detection and a single high-speed C-18 column with gradient elution. The procedure can resolve within 10 min these fluorinated catechols, their isomers, and dihydroxyphenylalanine. The chemical and radiochemical purity, and specific activity, can be determined before injection.  相似文献   

15.
Purpose[18F]Fluoromethylcholine ([18F]FMCH) is a radiopharmaceutical used in positron emission tomography (PET) imaging for the study of prostate, breast, and brain tumors. It is usually synthesized in cyclotron facilities where 18F is produced by proton irradiation of [18O]H2O through 18O(p,n)18F reaction. Due to the activation of target materials, the bombardment causes unwanted radionuclidic impurities in [18O]H2O, that need to be removed during the radiopharmaceutical synthesis. Thus, the aim of this study is to quantify the radionuclide impurities in the 18F production process and in the synthesized [18F]FMCH, demonstrating the radionuclidic purity of this radiopharmaceutical.MethodsLong-lived radionuclide impurities were experimentally assessed using high-resolution gamma and liquid scintillation spectrometries, while short-lived impurities were monitored analyzing the decay curve of the irradiated [18O]H2O with an activity calibrator. As spectrometric radionuclide library, a Geant4 Monte Carlo simulation of the 18F-target assembly was previously performed.Results3H, 52,54Mn, 56,57,58Co, 95m,96Tc, 109Cd, and 184Re were found in the irradiated [18O]H2O, but no radionuclide was found in the non-irradiated [18O]H2O neither in the final [18F]FMCH solution with an activity concentration greater than the minimum detectable activity concentration. A total impurity activity <6.2 kBq was measured in the irradiated [18O]H2O, whereas a [18F]FMCH radionuclide purity >99.9999998% was estimated. Finally, the decay curve of the irradiated [18O]H2O revealed a very low maximum of 13N activity (<0.03% of 18F) even immediately after the end of bombardment.ConclusionsThis study demonstrated the radionuclidic purity of [18F]FMCH according to the EU Pharmacopeia.  相似文献   

16.

Purpose

The translocator protein (18 kDa) (TSPO) is highly expressed on the bronchial and bronchiole epithelium, submucosal glands in intrapulmonary bronchi, pneumocytes and alveolar macrophages in human lung. This study aimed to perform positron emission tomography (PET) imaging of lung inflammation with [18F]FEDAC, a specific TSPO radioligand, and to determine cellular sources enriching TSPO expression in the lung.

Methods

An acute lung injury model was prepared by intratracheal administration of lipopolysaccharide (LPS) to rat. Uptake of radioactivity in the rat lungs was measured with small-animal PET after injection of [18F]FEDAC. Presence of TSPO was examined in the lung tissue using Western blot and immunohistochemical assays.

Results

The uptake of [18F]FEDAC increased in the lung with the progress of inflammation by treatment with LPS. Pretreatment with a TSPO-selective ligand PK11195 showed a significant decrease in the lung uptake of [18F]FEDAC due to competitive binding to TSPO. TSPO expression was elevated in the inflamed lung section and its level responded to the [18F]FEDAC uptake and severity of inflammation. Increase of TSPO expression was mainly found in the neutrophils and macrophages of inflamed lungs.

Conclusion

From this study we conclude that PET with [18F]FEDAC may be a useful tool for imaging TSPO expression and evaluating progress of lung inflammation. Study on human lung using [18F]FEDAC-PET is promising.  相似文献   

17.
2-[(18)F]Fluoro-2-deoxy-D-glucose ([(18)F]FDG) as the most important PET radiotracer is available in almost every PET center. However, there are only very few examples using [(18)F]FDG as a building block for the synthesis of (18)F-labeled compounds. The present study describes the use of [(18)F]FDG as a building block for the synthesis of (18)F-labeled peptides and proteins. [(18)F]FDG was converted into [(18)F]FDG-maleimidehexyloxime ([(18)F]FDG-MHO), a novel [(18)F]FDG-based prosthetic group for the mild and thiol group-specific (18)F labeling of peptides and proteins. The reaction was performed at 100 degrees C for 15 min in a sealed vial containing [(18)F]FDG and N-(6-aminoxy-hexyl)maleimide in 80% ethanol. [(18)F]FDG-MHO was obtained in 45-69% radiochemical yield (based upon [(18)F]FDG) after HPLC purification in a total synthesis time of 45 min. Chemoselecetive conjugation of [(18)F]FDG-MHO to thiol groups was investigated by the reaction with the tripeptide glutathione (GSH) and the single cysteine containing protein annexin A5 (anxA5). Radiolabeled annexin A5 ([(18)F]FDG-MHO-anxA5) was obtained in 43-58% radiochemical yield (based upon [(18)F]FDG-MHO, n = 6), and [(18)F]FDG-MHO-anxA5 was used for a pilot small animal PET study to assess in vivo biodistribution and kinetics in a HT-29 murine xenograft model.  相似文献   

18.

Background and Objective

The overexpression of gelatinases, that is, matrix metalloproteinase MMP2 and MMP9, has been associated with tumor progression, invasion, and metastasis. To image MMP2 in tumors, we developed a novel ligand termed [18F]AlF-NOTA-C6, with consideration that: c(KAHWGFTLD)NH2 (herein, C6) is a selective gelatinase inhibitor; Cy5.5-C6 has been visualized in many in vivo tumor models; positron emission tomography (PET) has a higher detection sensitivity and a wider field of view than optical imaging; fluorine-18 (18F) is the optimal PET radioisotope, and the creation of a [18F]AlF-peptide complex is a simple procedure.

Methods

C6 was conjugated to the bifunctional chelator NOTA (1, 4, 7-triazacyclononanetriacetic acid) for radiolabeling [18F]AlF conjugation. The MMP2-binding characteristics and tumor-targeting efficacy of [18F]AlF-NOTA-C6 were tested in vitro and in vivo.

Results

The non-decay corrected yield of [18F]AlF-NOTA-C6 was 46.2–64.2%, and the radiochemical purity exceeded 95%. [18F]AlF-NOTA-C6 was favorably retained in SKOV3 and PC3 cells, determined by cell uptake. Using NOTA-C6 as a competitive ligand, the uptake of [18F]AlF-NOTA-C6 in SKOV3 cells decreased in a dose-dependent manner. In biodistribution and PET imaging studies, higher radioactivity concentrations were observed in tumors. Pre-injection of C6 caused a marked reduction in tumor tissue uptake. Immunohistochemistry showed MMP2 in tumor tissues.

Conclusions

[18F]AlF-NOTA-C6 was easy to synthesize and has substantial potential as an imaging agent that targets MMP2 in tumors.  相似文献   

19.
Despite of various PET radioligands targeting the translocator protein TSPO 18-KDa are used for the investigations of neuroinflammatory conditions associated with neurological disorders, development of new TSPO radiotracers is still an active area of the researches with a major focus on the 18F-labelled radiotracers. Here, we report the radiochemical synthesis of [18F]vinpocetine, fluorinated analogue of previously reported TSPO radioligand, [11C]vinpocetine. Radiolabeling was achieved by [18F]fluoroethylation of apovincaminic acid with [18F]fluoroethyl bromide. [18F]vinpocetine was obtained in quantities >2.7 GBq in RCY of 13% (non–decay corrected), and molar activity >60 GBq/µmol within 95 min synthesis time. Preliminary PET studies in a cynomolgus monkey and metabolite studies by HPLC demonstrated similar results by [18F]vinpocetine as for [11C]vinpocetine, including high blood-brain barrier permeability, regional uptake pattern and fast washout from the NHP brain. These results demonstrate that [18F]fluorovinpocetine warrants further evaluation as an easier accessible alternative to [11C]vinpocetine.  相似文献   

20.
Two [18F]-labelled analogues of the potent muscarinic cholinergic receptor (m-AChR) antagonist, dexetimide, were evaluated as potential ligands for imaging m-AChR by positron emission tomography (PET). Intravenous administration of both 2-[18F]- or 4-[18F]-fluorodexetimide resulted in high brain uptake of radioactivity in mice. High binding levels were observed in m-AChR rich areas, such as cortex and striatum, with low levels in the receptor-poor cerebellum. Uptake of radioactivity was saturable and could be blocked by pre-administration of dexetimide or atropine. Drugs with different sites of action were ineffective at blocking receptor binding. The results indicate that both radiotracers are promising candidates for use in PET studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号