首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The LPIN1 gene, encoding lipin‐1 protein, plays critical roles in adipocyte differentiation and lipid metabolism. This study aimed to analyze the association of LPIN1 mRNA levels in human adipose tissue with metabolic phenotypes. We also examined the association of LPIN1 genetic variation with type 2 diabetes and related metabolic phenotypes in the Chinese population. The relative LPIN1 mRNA levels were measured in abdominal visceral (VAT) and subcutaneous adipose tissue (SAT) obtained from 102 nondiabetic Chinese females. Seven single‐nucleotide polymorphisms (SNPs) spanning from the 5′‐upstream region to the 3′‐end of the LPIN1 gene were genotyped in 1,520 Chinese (760 type 2 diabetic cases and 760 controls). LPIN1 mRNA levels in VAT were negatively correlated with BMI (r = ?0.21, P = 0.03), body fat percentage (r = ?0.22, P = 0.02), plasma triglycerides levels (r = ?0.21, P = 0.03), and plasma leptin levels (r = ?0.63, P = 0.0002). LPIN1 mRNA levels were positively correlated with PPARG and ADIPOQ mRNA levels in both VAT and SAT. No single SNP of the LPIN1 gene was associated with type 2 diabetes in our population. One rare haplotype showed a significant association with type 2 diabetes (odds ratio (OR), 4.35; 95% confidence interval, 1.86–11.75; P = 4 × 10?4). No SNP or haplotype of the LPIN1 gene was associated with quantitative metabolic traits in the nondiabetic subjects. The results confirmed the association of LPIN1 gene expression in adipose tissue with lower adiposity and favorable metabolic profiles in the Chinese population. However, the LPIN1 gene seemed not to be a major susceptibility gene for type 2 diabetes or related metabolic phenotypes in the Chinese population.  相似文献   

3.
Genome wide association studies revealed an association of the single nucleotide polymorphism rs11708067 within the ADCY5 gene—encoding adenylate cyclase 5—with increased type 2 diabetes (T2D) risk and higher fasting glucose. However, it remains unclear whether the association between ADCY5 variants and glycemic traits may involve adipose tissue (AT) related mechanisms. We therefore tested the hypothesis that ADCY5 mRNA expression in human and mouse AT is related to obesity, fat distribution, T2D in humans and high fat diet (HFD) in mice. We measured ADCY5 mRNA expression in paired samples of visceral and subcutaneous adipose tissue from 244 individuals with a wide range of body weight and parameters of hyperglycemia, which have been genotyped for rs11708067. In addition, AT ADCY5 mRNA was assessed in C57BL/6NTac which underwent a 10 weeks standard chow (n = 6) or high fat diet (HFD, n = 6). In humans, visceral ADCY5 expression is significantly higher in obese compared to lean individuals. ADCY5 expression correlates with BMI, body fat mass, circulating leptin, fat distribution, waist and hip circumference, but not with fasting plasma glucose and HbA1c. Adcy5 expression in mouse AT is significantly higher after a HFD compared to chow (p<0.05). Importantly, rs11708067 is not associated with ADCY5 mRNA expression levels in either fat depot in any of the genetic models tested. Our results suggest that changes in AT ADCY5 expression are related to obesity and fat distribution, but not with impaired glucose metabolism and T2D. However, altered ADCY5 expression in AT does not seem to be the mechanism underlying the association between rs11708067 and increased T2D risk.  相似文献   

4.
Clock gene expression was associated with different components of metabolic syndrome (MS) in human adipose tissue. However, no study has been done to compare the expression of clock genes in visceral adipose tissue (VAT) from lean and obese subjects and its clinical implications. Therefore, we studied in lean and obese women the endogenous 24 h expression of clock genes in isolated adipocytes and its association with MS components. VAT was obtained from lean (BMI 21–25 kg/m2; n = 21) and morbidly obese women (BMI >40 kg/m2; n = 28). The 24 h pattern of clock genes was analyzed every 6 hours using RT-PCR. Correlation of clinical data was studied by Spearman analysis. The 24 h pattern of clock genes showed that obesity alters the expression of CLOCK, BMAL1, PER1, CRY2 and REV-ERB ALPHA in adipocytes with changes found in CRY2 and REV-ERB ALPHA throughout the 24 h period. The same results were confirmed in VAT and stromal cells (SC) showing an upregulation of CRY2 and REV-ERB ALPHA from obese women. A positive correlation was observed for REV-ERB ALPHA gene expression with BMI and waist circumference in the obese population. Expression of ROR ALPHA was correlated with HDL levels and CLOCK with LDL. Obese subjects with MS exhibited positive correlation in the PER2 gene with LDL cholesterol, whereas REV-ERB ALPHA was correlated with waist circumference. We identified CRY2 and REV-ERB ALPHA as the clock genes upregulated in obesity during the 24 h period and that REV-ERB ALPHA is an important gene associated with MS.  相似文献   

5.
6.
7.
8.
Objective: Recent epidemiological studies have shown that there is an increased risk of obesity and hypertension in children born to women who smoked during pregnancy. The aim of this study was to examine the effect of fetal and neonatal exposure to nicotine, the major addictive component of cigarette smoke, on postnatal adiposity and blood vessel function. Research Methods and Procedures: Female Wistar rats were given nicotine or saline (vehicle) during pregnancy and lactation. Postnatal growth was determined in the male offspring from weaning until 26 weeks of age. At 26 weeks of age, fat pad weight and the function of the perivascular adipose tissue (PVAT) in the thoracic aorta and mesenteric arteries were examined. Results: Exposure to nicotine resulted in increased postnatal body weight and fat pad weight and an increased amount of PVAT in the offspring. Contraction of the aorta induced by phenylephrine was significantly attenuated in the presence of PVAT, whereas this effect was not observed in the aortic rings from the offspring of nicotine‐exposed dams. Phenylephrine‐induced contraction without PVAT was not different between saline‐ and nicotine‐exposed rats. Transfer of solution incubated with PVAT‐intact aorta to PVAT‐free aorta induced a marked relaxation response in the rats from saline‐exposed dams, but this relaxation response was significantly impaired in the rats from nicotine‐exposed dams. Discussion: Our results showed that prenatal nicotine exposure increased adiposity and caused an alteration in the modulatory function of PVAT on vascular relaxation response, thus providing insight into the mechanisms underlying the increased prevalence of obesity and hypertension in children exposed to cigarette smoke in utero.  相似文献   

9.
Krüppel-associated box zinc finger proteins (KRAB-ZFPs) are a huge family of vertebrate-specific repressors that modify gene expression in an epigenetic manner. Despite a well-defined repression mechanism, few biological roles or gene targets of KRAB-ZFP are known. Regulator of sex-limitation 1 (RSL1) is a mouse KRAB-ZFP that enforces male-predominant expression in the liver, affecting body mass and pubertal timing. Here we show that female but not male Rsl1−/− mice gain more weight than wild-type mice on a high-fat diet (HFD) and that key liver and white adipose tissue (WAT) metabolic genes are altered in both Rsl1−/− sexes in response to dietary stress. Expression profiling of Rsl1-sensitive genes in liver and WAT indicates that RSL1 accentuates sex-biased gene expression in liver but greatly diminishes it in WAT. RSL1 expression solely in liver is sufficient to limit diet-induced weight gain and suppress lipogenic genes in WAT, indicating that RSL1 balances metabolism via liver-to-adipose-tissue communication. RSL1''s effects on adult physiology exemplify a significant modulatory capacity of KRAB-ZFPs, in the absence of which there is widespread metabolic dysregulation. This ability to buffer against gene expression noise, coupled with extensive individual genetic variation, highlights the enormous potential of KRAB-Zfp genes as candidate risk factors for complex diseases.  相似文献   

10.

Background

Recent studies have shown that adult human possess active brown adipose tissue (BAT), which might be important in affecting obesity. However, the supporting evidence on the relationship between BAT and central obesity and metabolic profile in large population based studies is sparse.

Methodology/Principal Findings

We studied 4011 (2688 males and 1323 females) tumor-free Chinese adults aged 18-89 for BAT activities, visceral/subcutaneous fat areas (VFA/SFA), waist circumferences (WC) and metabolic parameters. We found that the prevalence of BAT was around 2.7% in our study participants, with a significant sexual difference (5.5% in the females vs. 1.3% in the males; p<0.0001). BAT detection was increased in low temperature and declined in elderly subjects. The BAT positive subjects had lower BMI (P<0.0001), less SFA (P<0.01), VFA (P<0.0001), WC (P<0.0001), lower fasting glucose and triglyceride levels (both P<0.01) and increased HDL cholesterol concentrations (P<0.0001), compared with the BAT negative subjects. Robust logistic regression revealed that after adjustment for covariates (including age, sex, BMI, VFA, SFA and WC), age and BMI in the males (0.92 [95%CI, 0.88-0.96] and 0.84 [95% CI, 0.75-0.96], both P ≤0.008) while age and VFA in the females (0.87 [95%CI, 0.83-0.91] and 0.98 [95%CI, 0.97-0.99], respectively, P<0.05) were independently associated with detectable BAT.

Conclusions/Significance

Our data suggest that decreased amount of active BAT might be associated with accumulation of visceral fat content and unfavorable metabolic outcomes.  相似文献   

11.
目的探讨肥胖者网膜脂肪和皮下脂肪两处肿瘤坏死因子-α(TNF-α)蛋白的表达与脂肪细胞大小的相关性。方法选取正常体重者16名,中心型肥胖者32名拟行外科手术患者,术中取出网膜脂肪和皮下脂肪标本,测定脂肪细胞大小,采用western blot方法测定TNF-α蛋白表达。结果肥胖者网膜脂肪和皮下脂肪两处TNF-α蛋白的水平均比正常体重对照组表达高(P<0.01),肥胖者网膜脂肪组织TNF-α蛋白表达高于皮下脂肪(P<0.05),同时研究发现肥胖者皮下脂肪细胞和网膜脂肪细胞大小均明显大于正常体重组(P<0.05),且肥胖者网膜脂肪和皮下脂肪两处脂肪组织TNF-α蛋白表达与脂肪细胞大小呈正相关(网膜:r=0.808,P<0.01;皮下:r=0.452,P<0.05)。结论肥胖者网膜脂肪和皮下脂肪细胞增大,在肥胖相关胰岛素抵抗的发生中起到了重要的作用。  相似文献   

12.
13.
14.
王湛  曹宇 《生命科学研究》2011,15(4):369-372
肥胖是由于机体能量储存与消耗的失衡而产生的.褐色脂肪组织通过产热的形式,能够将体内过多的能量释放出来,以减少能量积累,避免造成肥胖.现从褐色脂肪组织的结构、分布、功能以及调控机制等方面,对褐色脂肪组织与肥胖症的关系作一综述,旨在为防治肥胖症及相关疾病寻找理论基础和实验依据.  相似文献   

15.
Obesity is one of the most serious global health problems, with an incidence that increases yearly and coincides with the development of a variety of associated comorbidities (e.g., type 2 diabetes, nonalcoholic fatty liver disease, some immune‐related disorders). Although many studies have investigated the pathogenesis of overweight and obesity, multiple regulatory factors underlying the onset of obesity‐related metabolic disorders remain elusive. Macrophages contribute to modulation of obesity‐related inflammation and insulin resistance (IR); adipose tissue macrophages are particularly important in this context. Based on newly identified links between the chemokine system and obesity, macrophage polarization has become an essential target of new therapies for obesity‐related IR. The findings of multiple studies imply that variations in gut microbiota and its metabolites might contribute to the regulation of obesity and related metabolic disorders. Recently, several novel antidiabetic drugs, applied as treatment for weight loss, were shown to be effective for obesity‐induced IR and other comorbidities. The present review will discuss the properties and functions of macrophages in adipose tissue under conditions of obesity from three perspectives: the chemokine system, the gut microbiota, and antidiabetic drug application. It is proposed that macrophages might be a key therapeutic target for obesity‐induced complications.  相似文献   

16.
Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in adipose tissues are involved in obesity-mediated metabolic complications, including insulin resistance. Here, we summarize recent findings on the key roles of innate (neutrophils, macrophages, mast cells, eosinophils) and adaptive (regulatory T cells, type 1 helper T cells, CD8 T cells, B cells) immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. In particular, the roles of natural killer T cells, one type of innate lymphocyte, in adipose tissue inflammation will be discussed. Finally, a new role of adipocytes as antigen presenting cells to modulate T cell activity and subsequent adipose tissue inflammation will be proposed.  相似文献   

17.
Objective: Obesity is linked to both increased metabolic disturbances and increased adipose tissue macrophage infiltration. However, whether macrophage infiltration directly influences human metabolism is unclear. The aim of this study was to investigate if there are obesity‐independent links between adipose tissue macrophages and metabolic disturbances. Design and Methods: Expression of macrophage markers in adipose tissue was analyzed by DNA microarrays in the SOS Sib Pair study and in patients with type 2 diabetes and a BMI‐matched healthy control group. Results: The expression of macrophage markers in adipose tissue was increased in obesity and associated with several metabolic and anthropometric measurements. After adjustment for BMI, the expression remained associated with insulin sensitivity, serum levels of insulin, C‐peptide, high density lipoprotein cholesterol (HDL‐cholesterol) and triglycerides. In addition, the expression of most macrophage markers was significantly increased in patients with type 2 diabetes compared to the control group. Conclusion: Our study shows that infiltration of macrophages in human adipose tissue, estimated by the expression of macrophage markers, is increased in subjects with obesity and diabetes and associated with insulin sensitivity and serum lipid levels independent of BMI. This indicates that adipose tissue macrophages may contribute to the development of insulin resistance and dyslipidemia.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号