首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The golden-crowned sifaka (Propithecus tattersalli) is one of the most critically endangered species of Propithecus endemic to a limited area in the Daraina region of north-eastern Madagascar. This species is endangered due to habitat loss and fragmentation, a consequence of deforestation. Twenty nuclear microsatellite loci were isolated from genomic DNA derived from a Propithecus tattersalli from the Daraina area in north-eastern Madagascar. Population genetic parameters were estimated on 20 individuals from two Daraina forest fragments to determine the potential utility of this marker suite for future studies on the golden-crowned sifaka.  相似文献   

2.
Habitat fragmentation may strongly reduce individuals’ dispersal among resource patches and hence influence population distribution and persistence. We studied the impact of landscape heterogeneity on the dispersal of the golden‐crowned sifaka (Propithecus tattersalli), an endangered social lemur species living in a restricted and highly fragmented landscape. We combined spatial analysis and population genetics methods to describe population units and identify the environmental factors which best predict the rates and patterns of genetic differentiation within and between populations. We used non‐invasive methods to genotype 230 individuals at 13 microsatellites in all the main forest fragments of its entire distribution area. Our analyses suggest that the Manankolana River and geographical distance are the primary structuring factors, while a national road crossing the region does not seem to impede gene flow. Altogether, our results are in agreement with a limited influence of forest habitat connectivity on gene flow patterns (except for North of the species’ range), suggesting that dispersal is still possible today among most forest patches for this species. Within forest patches, we find that dispersal is mainly among neighbouring social groups, hence confirming previous behavioural observations.  相似文献   

3.
Dispersal is a central process determining community structure in heterogeneous landscapes, and species interactions within habitats may be a major determinant of dispersal. Although the effects of species interactions on dispersal within habitats have been well studied, how species interactions affect the movement of individuals between habitats in a landscape has received less attention. We conducted two experiments to assess the extent to which predation risk affects dispersal from an aquatic habitat by a flight-capable semi-aquatic insect (Notonecta undulata). Exposure to non-lethal (caged) fish fed conspecifics increased dispersal rates in N. undulata. Moreover, dispersal rate was positively correlated with the level of risk imposed by the fish; the greater the number of notonectids consumed by the caged fish, the greater the dispersal rate from the habitat. These results suggest that risk within a habitat can affect dispersal among habitats in a landscape and thus affect community structure on a much greater scale than the direct effect of predation itself.  相似文献   

4.
Dragonflies are good indicators of environmental health and biodiversity. Most studies addressing dragonfly ecology have focused on the importance of aquatic habitats, while the value of surrounding terrestrial habitats has often been overlooked. However, species associated with temporary aquatic habitats must persist in terrestrial environments for long periods. Little is known about the importance of terrestrial habitat patches for dragonflies, or about other factors that initiate or influence dispersal behaviour. The aim of this study was to reveal the relationship between population dynamics of the threatened dragonfly species Sympetrum depressiusculum at its natal site and its dispersal behaviour or routine movements within its terrestrial home range. We used a mark–release–recapture method (marking 2,881 adults) and exuviae collection with the Jolly–Seber model and generalized linear models to analyse seasonal and spatial patterns of routine movement in a heterogeneous Central European landscape. Our results show that utilisation of terrestrial habitat patches by adult dragonflies is not random and may be relatively long term (approximately 3 mo). Adult dragonflies were present only in areas with dense vegetation that provided sufficient resources; the insects were absent from active agricultural patches (p = 0.019). These findings demonstrate that even a species tightly linked to its natal site utilises an area that is several orders of magnitude larger than the natal site. Therefore, negative trends in the occurrence of various dragonfly species may be associated not only with disturbances to their aquatic habitats, but also with changes in the surrounding terrestrial landscape.  相似文献   

5.
Phylogeographic barriers, together with habitat loss and fragmentation, contribute to the evolution of a species’ genetic diversity by limiting gene flow and increasing genetic differentiation among populations. Changes in connectivity can thus affect the genetic diversity of populations, which may influence the evolutionary potential of species and the survival of populations in the long term. We studied the genetic diversity of the little known Northern rufous mouse lemur (Microcebus tavaratra), endemic to Northern Madagascar. We focused on the population of M. tavaratra in the Loky–Manambato region, Northern Madagascar, a region delimited by two permanent rivers and characterized by a mosaic of fragmented forests. We genotyped 148 individuals at three mitochondrial loci (D-loop, cytb, and cox2) in all the major forests of the study region. Our analyses suggest that M. tavaratra holds average genetic diversity when compared to other mouse lemur species, and we identified two to four genetic clusters in the study region, a pattern similar to that observed in another lemur endemic to the region (Propithecus tattersalli). The main cluster involved samples from the two mountain forests in the study region, which were connected until recently. However, the river crossing the study region does not appear to be a strict barrier to gene flow in M. tavaratra. Finally, the inferred demographic history of M. tavaratra suggests no detectable departure from stationarity over the last millennia. Comparisons with codistributed species (P. tattersalli and two endemic rodents, Eliurus spp.) suggest both differences and similarities in the genetic clusters identified (i.e., barriers to species dispersal) and in the inferred demographic history. These comparisons suggest that studies of codistributed species are important to understand the effects of landscape features on species and to reconstruct the history of habitat changes in a region.  相似文献   

6.
Comparative studies of the diet of the same species in different habitats, and over the long term, are essential to understanding a species’ behavioral and ecological plasticity. Moreover, such studies can help researchers and managers evaluate a species’ capacity to cope with changes in habitat quality resulting from natural processes or human disturbance, which is important for developing conservation strategies. We compared dietary data for François’ langur (Trachypithecus francoisi) collected at Nonggang and Fusui Nature Reserves, Guangxi Province, China, over 2 separate study periods to evaluate interannual and intersite variation in diet. Young leaves were the preferred staple foods for langurs, whereas mature leaves and seeds served as fallback foods in response to seasonal shortage in the abundance of young leaves. Species composition of the diets and the percentage of feeding records for plant species varied between the 2 study periods. The langurs at both study sites fed selectively, and they did not base their diet simply on the abundance of plant species in the habitat. However, the plant species eaten by langur groups inhabiting the 2 different reserves were markedly different, and the top 10 food species eaten by the Fusui group showed no overlap with those eaten by the Nonggang group. The variation may be related to differences in forest composition resulting from different level of human disturbance. In summary, our results indicate that François’ langurs exhibit a comparable dietary pattern both temporally and geographically, but there is marked interannual and intersite difference in species composition of the langur diet.  相似文献   

7.
Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates—species with small range sizes—is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km2) and local (up to 200 m2) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together with passive dispersal and population patch dynamics, positively contributes to soil faunal diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Recent research reports that many populations of species showing a wide trophic niche (generalists) are made up of both generalist individuals and individuals with a narrow trophic niche (specialists), suggesting trophic specializations at an individual level. If true, foraging strategies should be associated with individual quality and fitness. Optimal foraging theory predicts that individuals will select the most favourable habitats for feeding. In addition, the “landscape heterogeneity hypothesis” predicts a higher number of species in more diverse landscapes. Thus, it can be predicted that individuals with a wider realized trophic niche should have foraging territories with greater habitat diversity, suggesting that foraging strategies, territory quality and habitat diversity are inter-correlated. This was tested for a population of common kestrels Falco tinnunculus. Diet diversity, territory occupancy (as a measure of territory quality) and habitat diversity of territories were measured over an 8-year period. Our results show that: 1) territory quality was quadratically correlated with habitat diversity, with the best territories being the least and most diverse; 2) diet diversity was not correlated with territory quality; and 3) diet diversity was negatively correlated with landscape heterogeneity. Our study suggests that niche generalist foraging strategies are based on an active search for different prey species within or between habitats rather than on the selection of territories with high habitat diversity.  相似文献   

9.
The genetic structure of the golden-crowned sifaka (Propithecus tattersalli) was evaluated in three forest types in the Daraina region between the Loky and Manambato Rivers in northeastern Madagascar. This critically endangered lemur species, only found within this restricted region (~1,300 km2), comprises populations which survive in forest fragments of varying size. While this remote region is already affected by human deforestation, the scheduled paving of the national road can potentially bring significant changes in the near future. In 2006, sifakas feces from 82 putative individuals were collected immediately after defecation. DNA samples were genotyped at 13 microsatellite loci to characterize patterns of genetic diversity within and among three sets of forest fragments representing different ecological types. The recent 2CTAB/PCI extraction method and the ‘comparative’ genotype validation approach allowed us to significantly improve the efficiency of amplification procedures. We found that golden-crowned sifaka genetic diversity was surprisingly high despite its narrow distribution and the current level of habitat fragmentation. We used both spatial and non-spatial Bayesian clustering methods to determine if forest edges correlated with cryptic genetic clusters and found that it was overall the case. However, the results also indicate that migrations are possible between two of the three studied forest complexes despite the presence of the national road. This is probably due to remaining riparian and small forest patches between these two forest complexes. The third forest complex is more differentiated although some migrations/connections may still exist through non-sampled fragments. This strongly suggests that it is necessary to maintain corridors and small patches, and also to explore the genetic diversity of the fragments outside the protected area.  相似文献   

10.
Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists.  相似文献   

11.
Spatial configuration of habitats influences genetic structure and population fitness whereas it affects mainly species with limited dispersal ability. To reveal how habitat fragmentation determines dispersal and dispersal-related morphology in a ground-dispersing insect species we used a bush-cricket (Pholidoptera griseoaptera) which is associated with forest-edge habitat. We analysed spatial genetic patterns together with variability of the phenotype in two forested landscapes with different levels of fragmentation. While spatial configuration of forest habitats did not negatively affect genetic characteristics related to the fitness of sampled populations, genetic differentiation was found higher among populations from an extensive forest. Compared to an agricultural matrix between forest patches, the matrix of extensive forest had lower permeability and posed barriers for the dispersal of this species. Landscape configuration significantly affected also morphological traits that are supposed to account for species dispersal potential; individuals from fragmented forest patches had longer hind femurs and a higher femur to pronotum ratio. This result suggests that selection pressure act differently on populations from both landscape types since dispersal-related morphology was related to the level of habitat fragmentation. Thus observed patterns may be explained as plastic according to the level of landscape configuration; while anthropogenic fragmentation of habitats for this species can lead to homogenization of spatial genetic structure.  相似文献   

12.
Aim To determine whether the effect of habitat fragmentation and habitat heterogeneity on species richness at different spatial scales depends on the dispersal ability of the species assemblages and if this results in nested species assemblages. Location Agricultural landscapes distributed over seven temperate Europe countries covering a range from France to Estonia. Methods We sampled 16 local communities in each of 24 agricultural landscapes (16 km2) that differ in the amount and heterogeneity of semi‐natural habitat patches. Carabid beetles were used as model organisms as dispersal ability can easily be assessed on morphological traits. The proximity and heterogeneity of semi‐natural patches within the landscape were related to average local (alpha), between local (beta) and landscape (gamma) species richness and compared among four guilds that differ in dispersal ability. Results For species assemblages with low dispersal ability, local diversity increased as the proximity of semi‐natural habitat increased, while mobile species showed an opposite trend. Beta diversity decreased equally for all dispersal classes in relation to proximity, suggesting a homogenizing effect of increased patch isolation. In contrast, habitat diversity of the semi‐natural patches affected beta diversity positively only for less mobile species, probably due to the low dispersal ability of specialist species. Species with low mobility that persisted in highly fragmented landscapes were consistently present in less fragmented ones, resulting in nested assemblages for this mobility class only. Main conclusions The incorporation of dispersal ability reveals that only local species assemblages with low dispersal ability show a decrease of richness as a result of fragmentation. This local species loss is compensated at least in part by an increase in species with high dispersal ability, which obscures the effect of fragmentation when investigated across dispersal groups. Conversely, fragmentation homogenizes the landscape fauna for all dispersal groups, which indicates the invasion of non‐crop habitats by similar good dispersers across the whole landscape. Given that recolonization of low dispersers is unlikely, depletion of these species in modern agricultural landscapes appears temporally pervasive.  相似文献   

13.
Fragmentation and habitat loss pose major threats to global biodiversity. Especially forest dwelling species with small ranges and high habitat specialisation are affected by ongoing land use change. Building projects for infrastructural purposes, expanding settlements, and extensive agricultural areas are assumed to have a high impact on these species. The European Habitat’s Directive aims to conserve and restore habitat networks to lower these impacts. We propose that the idea of securing habitat networks for protected species should be incorporated within large scale landscape planning e.g. by modelling and improving corridors for umbrella species. Within a Danish-German project we developed a model demonstrating potential connecting corridors for Muscardinus avellanarius, a specialised forest dwelling rodent species with low dispersal ability. We used presence data and eco-geographical variables to find a data based time-efficient procedure which may be applied also in other species for future landscape planning. The habitat suitability model shows that the hazel dormouse occupies a narrow niche with highly suitable habitats comprising edge habitats. It indicates the preference of forest patches, linear structures and networks of the mentioned habitats. Along with connectivity the diversity of suitable habitats diversity is the major factor predicting hazel dormouse presence. For conservation management, we calculated habitat corridors and highlight sections with missing connections. This allowed us to accentuate regions of high management interest. The results represent the foundation not only for this cross-border conservation project, but also for long-term dormouse conservation on a federal-state level.  相似文献   

14.
L Favre-Bac  C Mony  A Ernoult  F Burel  J-F Arnaud 《Heredity》2016,116(2):200-212
In intensive agricultural landscapes, plant species previously relying on semi-natural habitats may persist as metapopulations within landscape linear elements. Maintenance of populations'' connectivity through pollen and seed dispersal is a key factor in species persistence in the face of substantial habitat loss. The goals of this study were to investigate the potential corridor role of ditches and to identify the landscape components that significantly impact patterns of gene flow among remnant populations. Using microsatellite loci, we explored the spatial genetic structure of two hydrochorous wetland plants exhibiting contrasting local abundance and different habitat requirements: the rare and regionally protected Oenanthe aquatica and the more commonly distributed Lycopus europaeus, in an 83 km2 agricultural lowland located in northern France. Both species exhibited a significant spatial genetic structure, along with substantial levels of genetic differentiation, especially for L. europaeus, which also expressed high levels of inbreeding. Isolation-by-distance analysis revealed enhanced gene flow along ditches, indicating their key role in effective seed and pollen dispersal. Our data also suggested that the configuration of the ditch network and the landscape elements significantly affected population genetic structure, with (i) species-specific scale effects on the genetic neighborhood and (ii) detrimental impact of human ditch management on genetic diversity, especially for O. aquatica. Altogether, these findings highlighted the key role of ditches in the maintenance of plant biodiversity in intensive agricultural landscapes with few remnant wetland habitats.  相似文献   

15.
Arthropod communities in fragmented agricultural landscapes depend on local processes and the interactions between communities in the habitat islands. We aimed to study metacommunity structure of spiders, a group that is known for high dispersal power, local niche partitioning and for engaging in species interactions. While living in fragmented habitats could lead to nestedness, other ecological traits of spiders might equally lead to patterns dominated either by species interactions or habitat filtering. We asked, which community pattern will prevail in a typical agricultural landscape with isolated patches of semi-natural habitats. Such a situation was studied by sampling spiders in 28 grassland locations in a Hungarian agricultural landscape. We used the elements of metacommunity structure (EMS) framework to distinguish between alternative patterns that reveal community organization. The EMS analysis indicated coherent species ranges, high turnover and boundary clumping, suggesting Clementsian community organization. The greatest variation in species composition was explained by local habitat characteristics, indicating habitat filtering. The influence of dispersal could be detected by the significant effect of landscape composition, which was strongest at 500 m. We conclude that dispersal allows spiders to respond coherently to the environment, creating similar communities in similar habitats. Consistent habitat differences, such as species rich versus species poor vegetation, lead to recognisably different, recurrent communities. These characteristics make spiders a predictable and diverse source of natural enemies in agricultural landscapes. Sensitivity to habitat composition at medium distances warns us that landscape homogenization may alter these metacommunity processes.  相似文献   

16.
The debate whether single large or several small (SLOSS) patches benefit biodiversity has existed for decades, but recent literature provides increasing evidence for the importance of small habitats. Possible beneficial mechanisms include reduced presence of predators and competitors in small habitat areas or specific functions such as stepping stones for dispersal. Given the increasing amount of studies highlighting individual behavioral differences that may influence these functions, we hypothesize that the advantage of small versus large habitat patches not only depends on patch functionality but also on the presence of animal personalities (i.e., risk-tolerant vs. risk-averse). Using an individual-based, spatially-explicit community model, we analyzed the diversity of mammal communities in landscapes consisting of a few large habitat islands interspersed with different amounts and sizes of small habitat patches. Within these heterogeneous environments, individuals compete for resources and form home-ranges, with only risk-tolerant individuals using habitat edges. Results show that when risk-tolerant individuals exist, small patches increase species diversity. A strong peak occurs at approximately 20% habitat cover in small patches when those small habitats are only used for foraging but not for breeding and home-range core position. Additional usage as stepping stones for juvenile dispersal further increases species persistence. Overall, our results reveal that a combination of a few large and several small habitat patches promotes biodiversity by enhancing landscape heterogeneity. Here, heterogeneity is created by pronounced differences in habitat functionality, increasing edge density, and variability in habitat use by different behavioral types. The finding that a combination of single large AND several small (SLASS) patches is needed for effective biodiversity preservation has implications for advancing landscape conservation. Particularly in structurally poor agricultural areas, modern technology enables precise management with the opportunity to create small foraging habitats by excluding less profitable agricultural land from cultivation.  相似文献   

17.
The ability of invasive mammals to adjust their diet in response to new or variable resources is often proposed to explain their invasion success on islands with differing environmental conditions, especially islands with strong spatiotemporal changes in the nature and abundance of their resources. In this study, we investigated how habitat heterogeneity and seasonal fluctuation in resource quality affect dietary breadth and plasticity in an island-invasive rodent, the black rat Rattus rattus, on a small Mediterranean island. We tested for dietary plasticity of rats at both the individual and population levels by using traditional dietary and stable isotope analyses at successively increasing time scales, coupled with a long-term study of individual rats in three habitats of close proximity. Dietary and movement analyses both indicated that R. rattus is able to exploit a wide range of resources and habitats. However, dietary plasticity and habitat breadth were far narrower at the individual level. Results revealed that rats exclusively used resources found in their local habitat, and very few individuals moved among adjacent habitats in pursuit of higher-quality resources, despite those resources being abundant in their immediate environment. This counterintuitive finding suggests that intraspecific interactions must restrict rat mobility. Our results suggest that even on small islands, accessibility of patchy and high-quality resources to individuals from the entire population is not systematic. This result has important implications when quantifying invasive rodent impacts on patchily distributed species, especially when studies use indirect methods such as dietary analyses as a substitute for direct observations of predatory behavior.  相似文献   

18.
Habitat loss and landscape degradation affect animal-mediated seed dispersal, often collapsing the regeneration of endangered plant species and habitats in anthropogenic landscapes. We first compared the role of red fox and other vertebrates as seed disperser for the keystone scrub Ziziphus lotus. Because it turned out that foxes are the major Z. lotus dispersers, we investigated how fox activity and dispersal service relate to habitat loss and landscape alteration in the threatened Ziziphus semiarid scrublands, a priority habitat for conservation in Europe. Considering its opportunistic behavior, we hypothesized that landscape features should affect moderately fox abundance, while influence in a large extent its dispersal service. Accordingly, we predicted that a substantial decline in Ziziphus fruit consumption rather than in disperser activity would be responsible for seed dispersal collapse under severe habitat loss. We evaluated fox activity and dispersal service in 17 populations of Z. lotus spread through the range of its habitat in Spain and found within landscapes with different land-use intensity. We certified the collapse of the dispersal service by fox under severe habitat loss and confirmed that fox activity was less affected by habitat loss or landscape alteration than consumption of Ziziphus fruits. Consequently, the decline of consumption of Ziziphus fruits under severe habitat loss triggers the collapse of its seed dispersal. Results suggest that without increase of the remnant areas other managements may not suffice to achieve seed dispersal and habitat restoring. Dispersal service and natural regeneration in many Ziziphus habitat remnants will possibly cease in the future if habitat loss continues.  相似文献   

19.
Environmental variability can lead to dispersal: why stay put if it is better elsewhere? Without clues about local conditions, the optimal strategy is often to disperse a set fraction of offspring. Many habitats contain environmentally differing sub‐habitats. Is it adaptive for individuals to sense in which sub‐habitat they find themselves, using environmental clues, and respond plastically by altering the dispersal rates? This appears to be done by some plants which produce dimorphic seeds with differential dispersal properties in response to ambient temperature. Here we develop a mathematical model to show, that in highly variable environments, not only does sensing promote plasticity of dispersal morph ratio, individuals who can sense their sub‐habitat and respond in this way have an adaptive advantage over those who cannot. With a rise in environmental variability due to climate change, our understanding of how natural populations persist and respond to changes has become crucially important.  相似文献   

20.
1. Anthropogenic pressures have produced heterogeneous landscapes expected to influence diversity differently across trophic levels and spatial scales. 2. We tested how activity density and species richness of carabid trophic groups responded to local habitat and landscape structure (forest percentage cover and habitat richness) in 48 landscape parcels (1 km2) across eight European countries. 3. Local habitat affected activity density, but not species richness, of both trophic groups. Activity densities were greater in rotational cropping compared with other habitats; phytophage densities were also greater in grassland than forest habitats. 4. Controlling for country and habitat effects, we found general trophic group responses to landscape structure. Activity densities of phytophages were positively correlated, and zoophages uncorrelated, with increasing habitat richness. This differential functional group response to landscape structure was consistent across Europe, indicated by a lack of a country × habitat richness interaction. Species richness was unaffected by landscape structure. 5. Phytophage sensitivity to landscape structure may arise from relative dependency on seed from ruderal plants. This trophic adaptation, rare in Carabidae, leads to lower phytophage numbers, increasing vulnerability to demographic and stochastic processes that the greater abundance, species richness, and broader diet of the zoophage group may insure against.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号