共查询到20条相似文献,搜索用时 4 毫秒
1.
A Selvapandiyan R Duncan A Debrabant S Bertholet G Sreenivas N S Negi P Salotra H L Nakhasi 《The Journal of biological chemistry》2001,276(46):43253-43261
Leishmania donovani, a protozoan parasite, causes visceral disease in humans. To identify genes that control growth, we have isolated for the first time in the order Kinetoplastida a gene encoding for centrin from L. donovani. Centrin is a calcium-binding cytoskeletal protein essential for centrosome duplication or segregation. Protein sequence similarity and immunoreactivity confirmed that Leishmania centrin is a homolog of human centrin 2. Immunofluorescence analysis localized the protein in the basal body. Calcium binding analysis revealed that its C-terminal Ca(2+) binding domain binds 16-fold more calcium than the N-terminal domain. Electrophoretic mobility shift of centrin treated with EGTA and abrogation of the shift in its mutants lacking a Ca(2+) binding site suggest that Ca(2+) binding to these regions may have a role in the protein conformation. The levels of centrin mRNA and protein were high during the exponential growth of the parasite in culture and declined to a low level in the stationary phase. Expression of N-terminal-deleted centrin in the parasite significantly reduces its growth rate, and it was found that significantly more cells are arrested in the G(2)/M stage than in control cells. These studies indicate that centrin may have a functional role in Leishmania growth. 相似文献
2.
Heat shock proteins of the 100 kD family have been known to confer general stress tolerance in yeast and plants. Several protozoan parasites possess genes for Hsp100 proteins. In Leishmania species the protein is expressed under heat stress and during the mammalian stage, the amastigote. We show here that replacement of the clpB gene which encodes Hsp100 does not affect thermotolerance or general viability in Leishmania donovani insect stages (promastigotes) nor in axenically cultured mammalian stages (amastigotes). However, its expression is required for normal development of the parasite inside mammalian host cells. Hsp100 appears to function as an antagonist of amastigote-to-promastigote differentiation and a promoter of full amastigote development. 相似文献
3.
Li J Kim S Kobayashi T Liang FX Korzeniewski N Duensing S Dynlacht BD 《EMBO reports》2012,13(6):547-553
Here we identify Neuralized homologue 4 (Neurl4) as a protein that interacts with CP110, a centrosomal protein that regulates centrosome duplication. Neurl4 uses a Neuralized homology repeat to preferentially localize to procentrioles and daughter centrioles. Neurl4 depletion results in ectopic microtubular organizing centres (MTOCs), leading to accumulation of CP110 and recruitment of a cohort of centrosomal proteins. We show that these ectopic MTOCs persist through mitosis and assemble aberrant mitotic spindles. Interestingly, Neurl4 promotes ubiquitylation of CP110, thereby destabilizing this protein. Our results indicate that Neurl4 counteracts accumulation of CP110, thereby maintaining normal centriolar homeostasis and preventing formation of ectopic MTOCs. 相似文献
4.
The nondegradable Mps1(Δ12/13) protein drives centriole overproduction, suggesting that Mps1 phosphorylates a subset of centrosomal proteins to drive the assembly of new centrioles. Here we identify three Mps1 phosphorylation sites within the centriolar protein Centrin 2 (Cetn2). Although centrioles can be assembled in the absence of Cetn2, centriole assembly is attenuated in the absence of Cetn2. While wild-type Cetn2 can compensate for this attenuation, a nonphosphorylatable version cannot. In addition, overexpressing Cetn2 causes Mps1-dependent centriole overproduction that requires each of the three Mps1 phosphorylation sites within Cetn2 and is greatly exacerbated by mimicking phosphorylation at any of these sites. Wild-type Cetn2 generates excess foci that are competent as mitotic spindle poles in HsSas-6-depleted cells, suggesting that Cetn2 can organize a subset of centriolar proteins independently of cartwheels. However, centriole overproduction caused by a phosphomimetic Cetn2 mutant requires HsSas-6, suggesting that Cetn2 phosphorylation stimulates the canonical centriole assembly pathway. Moreover, in the absence of Cetn2, Mps1(Δ12/13) cannot drive the production of mature centrioles capable of recruiting γ-Tubulin, and a nonphosphorylatable Cetn2 mutant cannot compensate for this defect and exacerbates Cetn2 depletion. Together, our data suggest that Mps1-dependent phosphorylation of Cetn2 stimulates the canonical centriole assembly pathway. 相似文献
5.
The objective of this study was to analyse the modulatory effect of proteins released by cultured Leishmania infantum promastigotes on the cellular immune response of infected susceptible (BALB/c) and more resistant (C57BL/6) mice strains after 30 and 45 days of infection. One month after parasite inoculation, L. infantum released protein fractions (High, Inter, and Low according to molecular weight) stimulated C57BL/6 mice spleen cells to proliferate and to express cytokines. Following the decrease of parasite load only the Low protein fraction induced a considerable release of IL-4. In BALB/c mice, specific immune response to protein fractions was only observed at the higher parasitic level, with the fraction Inter promoting the production of IL-4 and fractions High and Low inducing high levels of IL-12. These results point out to a role of these proteins fractions in the modulation of host immunity, that depending on the host genetic background and parasite magnitude, seem to be critical in the control of parasite replication levels, thus avoiding premature host death. 相似文献
6.
The centriole is a ninefold symmetrical structure found at the core of centrosomes and, as a basal body, at the base of cilia, whose conserved duplication is regulated by Plk4 kinase. Plk4 phosphorylates a single serine residue at the N-terminus of Ana2 to promote Ana2''s loading to the site of procentriole formation. Four conserved serines in Ana2''s STAN motif are then phosphorylated by Plk4, enabling Sas6 recruitment. Crystallographic data indicate that the coiled–coil domain of Ana2 forms a tetramer but the structure of full-length Ana2 has not been solved. Here, we have employed hydrogen–deuterium exchange coupled with mass spectrometry (HDX-MS) to uncover the conformational dynamics of Ana2, revealing the high flexibility of this protein with one rigid region. To determine the elusive nature of the interaction surfaces between Ana2 and Sas6, we have confirmed complex formation between the phosphomimetic form of Ana2 (Ana2-4D) and Sas6 in vitro and in vivo. Analysis of this complex by HDX-MS identifies short critical regions required for this interaction, which lie in the C-terminal parts of both proteins. Mutational studies confirmed the relevance of these regions for the Ana2–Sas6 interaction. The Sas6 site required for Ana2 binding is distinct from the site required for Sas6 to bind Gorab and Sas6 is able to bind both these protein partners simultaneously. 相似文献
7.
Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication 总被引:1,自引:0,他引:1
Lutz W Lingle WL McCormick D Greenwood TM Salisbury JL 《The Journal of biological chemistry》2001,276(23):20774-20780
Once during each cell cycle, mitotic spindle poles arise by separation of newly duplicated centrosomes. We report here the involvement of phosphorylation of the centrosomal protein centrin in this process. We show that centrin is phosphorylated at serine residue 170 during the G(2)/M phase of the cell cycle. Indirect immunofluorescence staining of HeLa cells using a phosphocentrin-specific antibody reveals intense labeling of mitotic spindle poles during prophase and metaphase of the cell division cycle, with diminished staining of anaphase and no staining of telophase and interphase centrosomes. Cultured cells undergo a dramatic increase in centrin phosphorylation following the experimental elevation of PKA activity, suggesting that this kinase can phosphorylate centrin in vivo. Surprisingly, elevated PKA activity also resulted intense phosphocentrin antibody labeling of interphase centrosomes and in the concurrent movement of individual centrioles apart from one another. Taken together, these results suggest that centrin phosphorylation signals the separation of centrosomes at prophase and implicates centrin phosphorylation in centriole separation that normally precedes centrosome duplication. 相似文献
8.
9.
Extracellular phosphorylation in the parasite, Leishmania major 总被引:2,自引:0,他引:2
Intact promastigotes or cell-free extracts of the parasite Leishmania major were labelled with adenosine 5'[gamma-32P]-triphosphate (ATP). This resulted in the identification of eleven phosphoproteins. [gamma-32P]ATP incorporation into endogenous and exogenous substrates was insensitive to most of the commonly used protein kinase inhibitors and activators indicating that the leishmanial enzyme(s) may represent a new class of kinase(s). In addition, exogenous substrate specificity was inconsistent with the preferences of second messenger-dependent protein kinases. Cyclic AMP had differential effects on phosphorylation in intact cells and lysates. The majority of kinase activity could be attributed to an externally oriented membrane-associated protein kinase(s), as no specific cytosolic phosphoproteins were found and intact cells phosphorylated exogenous substrates. Labelled ATP did not cross the membrane and [alpha-32P]ATP was an unsuitable substrate for the phosphorylation activity. The ectokinase activity on live Leishmania exhibited a different substrate preference when compared to the protein kinase activity in the particulate fraction, suggesting that more than one protein kinase may be present in L. major. Three serine-labelled phosphoproteins were specifically released into the medium. The presence of an ecto-kinase and these released phosphoproteins may play a significant role in host-parasite interactions. 相似文献
10.
Members of the mitogen-activated protein (MAP) kinase cascade are important for the establishment of a Leishmania mexicana infection and are involved in flagellar length control, although the underlying molecular mechanisms remain to be elucidated. This study reports the cloning and characterization of LmxPK4, a MAP kinase kinase homologue of L. mexicana displaying putative plant-like regulatory phosphorylation sites. The recombinant protein has autophosphorylating activity and phosphorylates myelin basic protein. An LmxPK4 gene deletion mutant showed a proliferation defect after infection of macrophages and no or delayed lesion development in mice. Irrespective of the onset of lesion development parasites showed an early and homogeneous lesion development in re-infection experiments. This is indicative for a compensation of the null mutant phenotype. Additionally, this phenotype could be reverted by reintroduction of the wild-type gene into the deletion background. Mutants expressing loss-of-function or N-terminally truncated versions of LmxPK4 retained the null mutant phenotype. LmxPK4 is stage-specifically expressed in promastigotes and during differentiation to amastigotes, but is not detectable in amastigotes isolated from the mammalian host. Moreover, its in vitro kinase activity increases with temperature rise up to 40 degrees C. Our results suggest that LmxPK4 is involved in the differentiation process and affects virulence of Leishmania mexicana. 相似文献
11.
Smirlis D Bisti SN Xingi E Konidou G Thiakaki M Soteriadou KP 《Molecular microbiology》2006,60(6):1457-1473
Episomal expression of Leishmania histone H1 sense mRNAs in Leishmania major promastigotes was found previously to result in overexpression of this molecule and to reduce parasite infectivity in vitro. Herein, we evaluated the in vivo infectivity of these transfectants, in BALB/c mice, and showed that it is dramatically reduced. No lesions were observed in this group of mice and this was associated with an extremely low number of parasites both in the footpad and in the draining lymph nodes. Interestingly, the transfectants-reduced infectivity was associated with a delay in their cell-cycle progression and differentiation to axenic amastigotes, assessed in vitro. Therefore, the dramatic reduction in their infectivity may be attributed to the above-mentioned phenotypic modifications. As the metazoan linker histone H1(0) homologue is known to delay cell-cycle progression in mammalian cells we investigated whether its Leishmania counterpart, which possesses homology to its C-terminal region, when expressed in mammalian cells may also affect their cell-cycle progression. It was thus shown that Leishmania histone H1 expressed in COS7 and NIH 3T3 cells, delays cell-cycle progression in these cells too. The latter strengthens the phenotype observed in Leishmania and provides evidence that critical functions of histone H1 molecules are conserved throughout evolution. 相似文献
12.
13.
Alexandra Zinoviev M��lissa L��ger Gerhard Wagner Michal Shapira 《Nucleic acids research》2011,39(19):8404-8415
In eukaryotes, exposure to stress conditions causes a shift from cap-dependent to cap-independent translation. In trypanosomatids, environmental switches are the driving force of a developmental program of gene expression, but it is yet unclear how their translation machinery copes with their constantly changing environment. Trypanosomatids have a unique cap structure (cap-4) and encode four highly diverged paralogs of the cap-binding protein, eIF4E; none were found to genetically complement a yeast mutant failing to express eIF4E. Here we show that in promastigotes, a typical cap-binding complex is anchored through LeishIF4E-4, which associates with components of the cap-binding pre-initiation complex. In axenic amastigotes, expression of LeishIF4E-4 decreases and the protein does not bind the cap, whereas LeishIF4E-1 maintains its expression level and associates with the cap structure and with translation initiation factors. However, LeishIF4E-1 does not interact with eIF4G-like proteins in both life stages, excluding its involvement in cap-dependent translation. Using pull-down assays and mass-spectrometry, we identified a novel, non-conserved 4E-Interacting Protein (Leish4E-IP), which binds to LeishIF4E-1 in promastigotes, but not in amastigotes. Yeast two-hybrid and NMR spectroscopy confirmed the specificity of this interaction. We propose that Leish4E-IP is a translation regulator that is involved in switching between cap-dependent and alternative translation pathways. 相似文献
14.
Interaction of two actin-binding proteins,synaptopodin and alpha-actinin-4, with the tight junction protein MAGI-1 总被引:10,自引:0,他引:10
Patrie KM Drescher AJ Welihinda A Mundel P Margolis B 《The Journal of biological chemistry》2002,277(33):30183-30190
In an attempt to find podocyte-expressed proteins that may interact with the tight junction protein MAGI-1, we screened a glomerulus-enriched cDNA library with a probe consisting of both WW domains of MAGI-1. One of the isolated clones contained two WW domain-binding motifs and was identified as a portion of the actin-bundling protein synaptopodin. In vitro binding assays confirmed this interaction between MAGI-1 and synaptopodin and identified the second WW domain of MAGI-1 to be responsible for the interaction. MAGI-1 and synaptopodin can also interact in vivo, as they can be immunoprecipitated together from HEK293 cell lysates. Another actin-bundling protein that is found in glomerular podocytes and shown to be mutated in an inheritable form of glomerulosclerosis is alpha-actinin-4. We show that alpha-actinin-4 is also capable of binding to MAGI-1 in in vitro binding assays and that this interaction is mediated by the fifth PDZ domain of MAGI-1 binding to the C terminus of alpha-actinin-4. Exogenously expressed synaptopodin and alpha-actinin-4 were found to colocalize along with endogenous MAGI-1 at the tight junction of Madin-Darby canine kidney cells. The interaction and colocalization of MAGI-1 with two actin-bundling proteins suggest that MAGI-1 may play a role in actin cytoskeleton dynamics within polarized epithelial cells. 相似文献
15.
Castro-Pinto DB Lima EL Cunha AS Genestra M De Léo RM Monteiro F Leon LL 《Journal of enzyme inhibition and medicinal chemistry》2007,22(1):71-75
Trypanothione reductase (TR) is a major enzyme in trypanosomatids. Its substrate, trypanothione is a molecule containing a tripeptide (L-glutamic acid-cysteine-glycine) coupled to a polyamine, spermidine. This redox system (TR/Trypanothione) is vital for parasite survival within the host cell and has been described as a good target for chemotherapy anti-Leishmania. The use of tripeptides analogs of glutathione would result in a decrease in trypanothione synthesis and as a consequence in TR activity. In this work, besides the enzyme potential inhibition, it also evaluated the influence of those analogs on parasite growth and on its infective capacity. The results showed a significant effect on parasite growth and infectivity and in addition TR activity was highly inhibited. These results are very promising, suggesting a potential use of those analogs as therapeutic drugs against experimental diseases caused by trypanosomatids. 相似文献
16.
Rushda Sharf Hisamuddin Shiekh Abbasi Syed Ambreen Akhtar M.I. Robab 《Archives Of Phytopathology And Plant Protection》2013,46(5):622-630
An experiment was conducted to test the effect of different doses of 2, 4 and 8?g/2?kg of soil of Pochonia chlamydosporia against the root-knot nematode (Meloidogyne incognita) on Phaseolus vulgaris. It was observed that inoculation of plant with the nematode alone, and 15?days prior to fungal inoculation, reduced the plant growth when compared with the plant with fungal application followed by the nematode. Plant length, fresh and dry weight, chlorophyll, carotenoid, protein contents and nitrate reductase activity decreased in nematode-infested plants. Application of higher dose of 8?g/2?kg of soil of P. chlamydosporia increased all the plant growth parameters as well as biochemical parameters. Highest number of galls per root system was recorded on the plants infested with nematode but not treated with the fungus. However, application of fungus prior to nematode inoculation improved the plant growth and reduced the number of galls and the number of egg masses per root system. 相似文献
17.
《Autophagy》2013,9(2):159-172
Leishmania major possesses, apparently uniquely, four families of ATG8-like genes, designated ATG8, ATG8A, ATG8B and ATG8C, and 25 genes in total. L. major ATG8 and examples from the ATG8A, ATG8B and ATG8C families are able to complement a Saccharomyces cerevisiae ATG8-deficient strain, indicating functional conservation. Whereas ATG8 has been shown to form putative autophagosomes during differentiation and starvation of L. major, ATG8A primarily form puncta in response to starvation - suggesting a role for ATG8A in starvation-induced autophagy. Recombinant ATG8A was processed at the scissile glycine by recombinant ATG4.2 but not ATG4.1 cysteine peptidases of L. major and, consistent with this, ATG4.2-deficient L. major mutants were unable to process ATG8A and were less able to withstand starvation than wild type cells. GFP-ATG8-containing puncta were less abundant in ATG4.2 over-expression lines, in which unlipidated ATG8 predominated, which is consistent with ATG4.2 being an ATG8-deconjugating enzyme as well as an ATG8A-processing enzyme. In contrast, recombinant ATG8, ATG8B and ATG8C were all processed by ATG4.1, but not by ATG4.2. ATG8B and ATG8C both have a distinct subcellular location close to the flagellar pocket, but the occurrence of the GFP-labelled puncta suggest that they do not have a role in autophagy. L. major genes encoding possible ATG5, ATG10 and ATG12 homologues were found to complement their respective S. cerevisiae mutants, and ATG12 localised in part to ATG8-containing puncta, suggestive of a functional ATG5-ATG12 conjugation pathway in the parasite. L. major ATG12 is unusual as it requires C-terminal processing by an as yet unidentified peptidase. 相似文献
18.
Jéssica V. Faria Maurício S. dos Santos Alice M.R. Bernardino Klaus M. Becker Gérzia M.C. Machado Raquel F. Rodrigues Marilene M. Canto-Cavalheiro Leonor L. Leon 《Bioorganic & medicinal chemistry letters》2013,23(23):6310-6312
A new series of 5-(1-aryl-3-methyl-1H-pyrazol-4-yl)-1H-tetrazole derivatives (4a–m) and their precursor 1-aryl-3-methyl-1H-pyrazole-4-carbonitriles (3a–m) were synthesized and evaluated as antileishmanials against Leishmania braziliensis and Leishmania amazonensis promastigotes in vitro. In parallel, the cytotoxicity of these compounds was evaluated on the RAW 264.7 cell line. The results showed that among the assayed compounds the substituted 3-chlorophenyl (4a) (IC50/24 h = 15 ± 0.14 μM) and 3,4-dichlorophenyl tetrazoles (4d) (IC50/24 h = 26 ± 0.09 μM) were the most potent against L. braziliensis promastigotes, as compared the reference drug pentamidine, which presented IC50 = 13 ± 0.04 μM. In addition, 4a and 4d derivatives were less cytotoxic than pentamidine. However, these tetrazole derivatives (4) and pyrazole-4-carbonitriles precursors (3) differ against each of the tested species and were more effective against L.braziliensis than on L. amazonensis. 相似文献
19.
20.
Iwan Ho 《Plant and Soil》1988,109(2):291-293
Amounts of N, P, K, Ca, Mg, Zn, Fe, and Mn absorbed by a nodulating and a non-nodulating (Non-nod) peanut genotype at two nitrogen fertilizer levels (nil and 200 kg N ha–1) were determined in a field experiment. The amounts of nutrient elements in the plant parts were greatest for N, followed by K, Ca, Mg, P, Fe, Mn, and Zn in descending order. Although there were differences in the uptake of other nutrients, the major difference between Non-nod and nodulating genotypes was in nitrogen indicating the poor yield of the Non-nod line due to its inability to acquire N.Submitted as Journal Article No: 677 by International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). 相似文献