首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Highly Pathogenic H5N1 Influenza Virus Infection in Migratory Birds   总被引:11,自引:0,他引:11  
H5N1avianinfluenza virus(AIV)has emerged as a pathogenic entityfor a variety of species,including humans,inre-cent years.Here we report an outbreak among migratory birds on Lake Qinghaihu,China,in May and June2005,inwhich more than a thousand birds were affected.Pancreatic necrosis and abnormal neurological symptoms were the majorclinical features.Sequencing of the complete genomes of four H5N1AIVstrains revealedthemto be reassortants relatedto a peregrine falconisolate from Hong Kong an…  相似文献   

3.
The highly pathogenic H5N1 avian influenza virus emerged from China in 1996 and has spread across Eurasia and Africa, with a continuous stream of new cases of human infection appearing since the first large-scale outbreak among migratory birds at Qinghai Lake. The role of wild birds, which are the natural reservoirs for the virus, in the epidemiology of the H5N1 virus has raised great public health concern, but their role in the spread of the virus within the natural ecosystem of free-ranging terrestrial wild mammals remains unclear. In this study, we investigated H5N1 virus infection in wild pikas in an attempt to trace the circulation of the virus. Seroepidemiological surveys confirmed a natural H5N1 virus infection of wild pikas in their native environment. The hemagglutination gene of the H5N1 virus isolated from pikas reveals two distinct evolutionary clades, a mixed/Vietnam H5N1 virus sublineage (MV-like pika virus) and a wild bird Qinghai (QH)-like H5N1 virus sublineage (QH-like pika virus). The amino acid residue (glutamic acid) at position 627 encoded by the PB2 gene of the MV-like pika virus was different from that of the QH-like pika virus; the residue of the MV-like pika virus was the same as that of the goose H5N1 virus (A/GS/Guangdong [GD]/1/96). Further, we discovered that in contrast to the MV-like pika virus, which is nonpathogenic to mice, the QH-like pika virus is highly pathogenic. To mimic the virus infection of pikas, we intranasally inoculated rabbits, a species closely related to pikas, with the H5N1 virus of pika origin. Our findings first demonstrate that wild pikas are mammalian hosts exposed to H5N1 subtype avian influenza viruses in the natural ecosystem and also imply a potential transmission of highly pathogenic avian influenza virus from wild mammals into domestic mammalian hosts and humans.Highly pathogenic avian influenza (HPAI) is an extremely infectious, systemic viral disease that causes a high rate of mortality in birds. HPAI H5N1 viruses are now endemic in avian populations in Southeast Asia and have repeatedly been transmitted to humans (9, 14, 27). Since 2003, the H5N1 subtype has been reported in 391 human cases of influenza and has caused 247 human deaths in 15 countries, leading to greater than 60% mortality among infected individuals (38). Although currently incapable of sustained human-to-human transmission, H5N1 viruses undoubtedly pose a serious threat to public health, as well as to the global economy. Hence, preparedness for such a threat is a global priority (36).Wild birds are considered to be natural reservoirs for influenza A viruses (6, 18, 21, 35, 37). Of the 144 type A influenza virus hemagglutinin-neuraminidase (HA-NA) combinations, 103 have been found in wild birds (5, 7, 17, 37). Since the first HPAI outbreak among migratory wild birds appeared at Qinghai Lake in western China in May 2005 (3, 16, 25, 34, 41), HPAI viruses of the H5N1 subtype have been isolated from poultry throughout Eurasia and Africa. The continued occurrence of human cases has created a situation that could facilitate a pandemic emergence. There is heightened concern that wild birds are a reservoir for influenza A viruses that switch hosts and stably adapt to mammals, including horses, swine, and humans (11, 19, 22, 37).Despite the recent expansion of avian influenza virus (AIV) surveillance and genomic data (5, 17, 20, 21, 33, 40), fundamental questions remain concerning the ecology and evolution of these viruses. Little is known about how terrestrial wild mammals within their natural ecological systems affect HPAI H5N1 epidemiology or about the virus''s effects on public health, though there are many reports of natural and experimental H5N1 virus infection in animals belonging to the taxonomic orders Carnivora (12, 13, 15, 28, 29) and Artiodactyla (15). Herein, we provide the results of our investigation into H5N1 virus infection in wild pikas (Ochotona curzoniae of the order Lagomorpha) within their natural ecological setting. We describe our attempt to trace the circulation of H5N1 viruses and to characterize pika H5N1 influenza virus (PK virus).  相似文献   

4.
The highly pathogenic avian influenza (HPAI) H5N1 virus has spread across Eurasia and into Africa. Its persistence in a number of countries continues to disrupt poultry production, impairs smallholder livelihoods, and raises the risk a genotype adapted to human-to-human transmission may emerge. While previous studies identified domestic duck reservoirs as a primary risk factor associated with HPAI H5N1 persistence in poultry in Southeast Asia, little is known of such factors in countries with different agro-ecological conditions, and no study has investigated the impact of such conditions on HPAI H5N1 epidemiology at the global scale. This study explores the patterns of HPAI H5N1 persistence worldwide, and for China, Indonesia, and India includes individual provinces that have reported HPAI H5N1 presence during the 2004–2008 period. Multivariate analysis of a set of 14 agricultural, environmental, climatic, and socio-economic factors demonstrates in quantitative terms that a combination of six variables discriminates the areas with human cases and persistence: agricultural population density, duck density, duck by chicken density, chicken density, the product of agricultural population density and chicken output/input ratio, and purchasing power per capita. The analysis identifies five agro-ecological clusters, or niches, representing varying degrees of disease persistence. The agro-ecological distances of all study areas to the medoid of the niche with the greatest number of human cases are used to map HPAI H5N1 risk globally. The results indicate that few countries remain where HPAI H5N1 would likely persist should it be introduced.  相似文献   

5.
Clade 2.2 Eurasian-lineage H5N1 highly pathogenic avian influenza viruses (HPAIVs) were first detected in Qinghai Lake, China, in 2005 and subsequently spread through Asia, Europe, and Africa. Importantly, these viruses carried a lysine at amino acid position 627 of the PB2 protein (PB2 627K), a known mammalian adaptation motif. Previous avian influenza virus isolates have carried glutamic acid in this position (PB2 627E), commonly described to restrict virus polymerase function in the mammalian host. We sought to examine the effect of PB2 627K on viral maintenance in the avian reservoir. Viruses constructed by reverse genetics were engineered to contain converse PB2 627K/E mutations in a Eurasian H5N1 virus (A/turkey/Turkey/5/2005 [Ty/05]) and, for comparison, a historical pre-Asian H5N1 HPAIV that naturally bears PB2 627E (A/turkey/England/50-92/1991 [50-92]). The 50-92 PB2 627K was genetically unstable during virus propagation, resulting in reversion to PB2 627E or the accumulation of the additional mutation PB2 628R and/or a synonymous mutation from an A to a G nucleotide at nucleotide position 1869 (PB2 A1869G). Intriguingly, PB2 628R and/or A1869G appeared to improve the genetic stability of 50-92 PB2 627K. However, the replication of 50-92 PB2 627K in conjunction with these stabilizing mutations was significantly restricted in experimentally infected chickens, where reversion to PB2 627E occurred. In contrast, no significant effects on viral fitness were observed for Ty/05 PB2 627E or 627K in in vitro or in vivo experiments. Our observations suggest that PB2 627K is supported in Eurasian-lineage viruses; in contrast, PB2 627K carries a significant fitness cost in the historical pre-Asian 50-92 virus.  相似文献   

6.
7.
A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine.  相似文献   

8.
9.
In spring 2006, highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 was detected in Austria in 119 dead wild birds. The hemagglutinin cleavage site showed that the amino acid sequence motif was identical to that of the Qinghai lineage. For detailed analysis, the hemagglutinin (HA) and neuraminidase (NA) genes of 27 selected Austrian H5N1 viruses originating from different regions and wild bird species were analyzed phylogenetically, which revealed two clearly separated Austrian subclusters, both belonging to European cluster EMA-1. Subcluster South (SCS) contains virus isolates from the south of Austria as well as from Slovenia, Turkey, Egypt, and Nigeria. The second subcluster, Northwest (SCN), covered a larger group of viruses originating from different locations and wild bird species in the northern and very western parts of Austria, as well as from Bavaria and Switzerland. Surprisingly, virus isolates originating from two mute swans and one wild duck found on the north side of the Alps did not cluster with SCN but with SCS. Together with isolates from Bavarian, the Czech Republic, Italy, and Slovakia, they form a genuine subgroup, named subgroup Bavaria (SGB). This subgroup forms a link to SCN, indicating a spread of the virus from south to north. There has been a general assumption that the generic HPAI introduction route into Europe was from Russia to north Germany, introducing cluster EMA-2 into Europe. Interestingly, our findings support the assumption of an alternative introduction of the HPAI H5N1 virus from Turkey to central Europe, where it spread as cluster EMA-1 during the outbreak of 2006.Highly pathogenic H5N1 viruses have been recognized in Asia since 1996, when the first Asian H5N1 virus (A/Goose/Guandgdong/1/96) was isolated from sick geese in southern China (25). Since then, this virus has caused endemic infections in poultry in many southeast Asian countries (13, 18). Although influenza viruses in wild aquatic birds occasionally are transmitted to chickens and turkeys, where they may produce outbreaks of severe disease, they do not appear to have entered the wild bird populations to a substantial extent until late April to June 2005, when a large outbreak of H5N1 infection occurred at Qinghai Lake in western China, a major breeding site of migratory birds (2). Subsequently to the outbreak at Qinghai Lake from April to June 2005, H5N1 viruses have continued to cause outbreaks in Asia and Europe (http://www.who.int).A major molecular determinant for the pathogenicity of H5 and H7 viruses is the amino acid sequence specifying the proteolytic cleavage site of hemagglutinin (HA). In lowly pathogenic avian influenza virus (LPAIV), single basic residues at the cleavage site restrict the proteolytic activation of HA to the respiratory and intestinal tracts. In contrast, insertional mutations at the genomic locus encoding the endoproteolytic cleavage site resulting in the presence of a polybasic site render it accessible for ubiquitous protease, resulting in severe, systemic infections (17). All analyzed viruses originating from Qinghai Lake showed the series of basic amino acids at the HA cleavage site PQGERRRKKRGLF, which is characteristic of high pathogenicity in chickens. They also exhibited a 20-amino-acid deletion of the neuraminidase (NA) stalk (residues 49 to 68) that is characteristic of the NA of the A/Goose/Guandgdong/1/96 virus (2).Salzberg et al. analyzed 36 isolates of highly pathogenic avian influenza (HPAI) H5N1 viruses collected from Europe, northern Africa, the Middle East, and Asia and described the genetic relationships among these isolates, which affect birds and humans (16). He grouped the isolates into three distinct lineages, one encompassing all known non-Asian isolates, and hypothesized that this Europe-African lineage has been introduced into the European-African region at least three times and has split into three distinct, independently evolving sublineages: EMA-1, EMA-2, and EMA-3. These three clades possibly represent either separate introductions or a single introduction from Asia via Russia into Europe or any other western site, which then has subsequently evolved into three sublineages, EMA-1, EMA-2, and EMA-3 (16). EMA-2 contains the first German H5N1-positive swan found at the beginning of February 2006 on the Baltic island Ruegen (A/Cygnus cygnus/Germany/R65/06). This suggests a single introduction route for this cluster, because a phylogenetic analysis of the HA and the NA nucleotide sequences revealed that the closest genetic relative was an isolate from Astrakhan (A/Cygnus olor/Astrakhan/Ast05-2-3/2005). From Astrakhan, located in southern Russia, a westward movement of wild birds to central Europe in late January/early February 2006 is suggested (24).The aim of this study was to perform a phylogenetic analysis of Austrian HPAI H5N1 isolates from the outbreak of 2006 to determine their linkage to the European clusters EMA-1, EMA-2, and EMA-3 and to identify possible implications for H5N1 introduction routes into Austria.  相似文献   

10.
With the recent emergence of a novel pandemic strain, there is presently intense interest in understanding the molecular signatures of virulence of influenza viruses. PB1-F2 proteins from epidemiologically important influenza A virus strains were studied to determine their function and contribution to virulence. Using 27-mer peptides derived from the C-terminal sequence of PB1-F2 and chimeric viruses engineered on a common background, we demonstrated that induction of cell death through PB1-F2 is dependent upon BAK/BAX mediated cytochrome c release from mitochondria. This function was specific for the PB1-F2 protein of A/Puerto Rico/8/34 and was not seen using PB1-F2 peptides derived from past pandemic strains. However, PB1-F2 proteins from the three pandemic strains of the 20th century and a highly pathogenic strain of the H5N1 subtype were shown to enhance the lung inflammatory response resulting in increased pathology. Recently circulating seasonal influenza A strains were not capable of this pro-inflammatory function, having lost the PB1-F2 protein''s immunostimulatory activity through truncation or mutation during adaptation in humans. These data suggest that the PB1-F2 protein contributes to the virulence of pandemic strains when the PB1 gene segment is recently derived from the avian reservoir.  相似文献   

11.
The substitution of glutamic acid (E) for lysine (K) at position 627 of the PB2 protein of avian H5N1 viruses has been identified as a virulence and host range determinant for infection of mammals. Here, we report that the E-to-K host-adaptive mutation in the PB2 gene appeared from day 4 and 5 along the respiratory tracts of mice and was complete by day 6 postinoculation. This mutation correlated with efficient replication of the virus in mice.  相似文献   

12.
Highly pathogenic avian influenza virus (HPAIV) continues to threaten human health. Non-human primate infection models of human influenza are desired. To establish an animal infection model with more natural transmission and to determine the pathogenicity of HPAIV isolated from a wild water bird in primates, we administered a Japanese isolate of HPAIV (A/whooper swan/Hokkaido/1/2008, H5N1 clade 2.3.2.1) to rhesus and cynomolgus monkeys, in droplet form, via the intratracheal route. Infection of the lower and upper respiratory tracts and viral shedding were observed in both macaques. Inoculation of rhesus monkeys with higher doses of the isolate resulted in stronger clinical symptoms of influenza. Our results demonstrate that HPAIV isolated from a water bird in Japan is pathogenic in monkeys by experimental inoculation, and provide a new method for HPAIV infection of non-human primate hosts, a good animal model for investigation of HPAIV pathogenicity.  相似文献   

13.
14.
15.
There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70–80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.  相似文献   

16.
以禽流感病毒株Ck/HK/Yu22/02(H5N1)作为免疫原,利用常规杂交瘤技术和血凝抑制试验法成功地筛选出6株稳定分泌抗高致病性H5亚型禽流感病毒血凝素的单克隆抗体(单抗),分别命名为2F2、3C8、3FC1、7C6、10HD4和13G4.经血凝抑制试验法分析,结果发现这6株单抗具有特异性高、反应性强、识别谱宽且互补等特点.基于单抗2F2,初步建立了三种H5N1病毒诊断方法,经评估证实均具有很好的特异性.由此说明,研究制备的抗H5亚型禽流感病毒血凝素单抗可适用于H5N1病毒的诊断.  相似文献   

17.
18.
In this study, we show that the highly pathogenic H5N1 avian influenza virus (AIV) (A/crow/Kyoto/53/04 and A/chicken/Egypt/CL6/07) induced apoptosis in duck embryonic fibroblasts (DEF). In contrast, apoptosis was reduced among cells infected with low-pathogenic AIVs (A/duck/HK/342/78 [H5N2], A/duck/HK/820/80 [H5N3], A/wigeon/Osaka/1/01 [H7N7], and A/turkey/Wisconsin/1/66 [H9N2]). Thus, we investigated the molecular mechanisms of apoptosis induced by H5N1-AIV infection. Caspase-dependent and -independent pathways contributed to the cytopathic effects. We further showed that, in the induction of apoptosis, the hemagglutinin of H5N1-AIV played a major role and its cleavage sequence was not critical. We also observed outer membrane permeabilization and loss of the transmembrane potential of the mitochondria of infected DEF, indicating that mitochondrial dysfunction was caused by the H5N1-AIV infection. We then analyzed Ca2+ dynamics in the infected cells and demonstrated an increase in the concentration of Ca2+ in the cytosol ([Ca2+]i) and mitochondria ([Ca2+]m) after H5N1-AIV infection. Regardless, gene expression important for regulating Ca2+ efflux from the endoplasmic reticulum did not significantly change after H5N1-AIV infection. These results suggest that extracellular Ca2+ may enter H5N1-AIV-infected cells. Indeed, EGTA, which chelates extracellular free Ca2+, significantly reduced the [Ca2+]i, [Ca2+]m, and apoptosis induced by H5N1-AIV infection. In conclusion, we identified a novel mechanism for influenza A virus-mediated cell death, which involved the acceleration of extracellular Ca2+ influx, leading to mitochondrial dysfunction and apoptosis. These findings may be useful for understanding the pathogenesis of H5N1-AIV in avian species as well as the impact of Ca2+ homeostasis on influenza A virus infection.Avian influenza viruses (AIVs) are classified as highly or low-pathogenic AIVs (HPAIVs or LPAIVs, respectively) based on their pathogenicity in chickens (1). HPAIVs cause systemic infections and high mortality in chickens (28), whereas poultry are asymptomatic or develop mild respiratory problems and/or intestinal illness after LPAIV infection (49). Hemagglutinin (HA) cleavability is a critical determinant of AIV pathogenicity in avian species (61). Other determinants, such as nonstructural (NS) protein and neuraminidase (NA) protein, reportedly regulate the virulence of AIVs (9, 29, 44). However, waterfowl, known as the natural host for AIVs, do not usually have any symptoms during an HPAIV infection (21), whereas they show neurologic symptoms and death after infection with some of the recently emerged HPAIVs, such as the Asian H5N1 virus (11, 46, 62). Thus, the entire mechanism responsible for the pathogenicity of the AIVs is not yet known. Unknown cellular and viral factors probably underlie the pathogenesis of HPAIVs in avian species, especially waterfowl.The alveolar epithelial cells (66) or vascular endothelial cells (32) of human patients and chickens infected by H5N1-AIV show apoptosis. Other reports suggest that apoptosis of these cells is essential for the development of acute lung injury in mice and acute respiratory distress syndrome in humans (39), which is often observed in H5N1-AIV-infected patients. Therefore, it is necessary to evaluate whether apoptosis is critical for the pathogenesis of H5N1-AIV in vivo and to understand the molecular mechanisms of the apoptotic cell death induced by H5N1-AIV infection.Ca2+ is a key regulator of cell survival, and the breakdown of Ca2+ homeostasis, due to sustained elevations in Ca2+ inside cells, triggers programmed cell death involving apoptosis (24). Indeed, disruption of Ca2+ homeostasis plays a key role in apoptosis during the pathogenic process of several types of viral infections, including those with human immunodeficiency virus (HIV), hepatitis C virus, and human T-cell leukemia virus type 1 (3, 4, 31, 57). In addition, the HIV gp120 envelope protein induces neuronal cell death through Ca2+ dysregulation, even in the absence of viral particles (25).In this study, we used duck embryonic fibroblasts (DEF) to elucidate the molecular mechanisms of the apoptotic cell death induced by H5N1-AIV. We show here that H5N1-AIV infection triggered extracellular Ca2+ influx and that this alteration in the concentration of Ca2+ inside the cells subsequently induced mitochondrial dysfunction and led to apoptotic cell death. In addition, we demonstrate that H5N1-HA was a critical viral factor for inducing apoptosis.  相似文献   

19.
Highly pathogenic H5N1 influenza viruses continue to cause concern, even though currently circulating strains are not efficiently transmitted among humans. For efficient transmission, amino acid changes in viral proteins may be required. Here, we examined the amino acids at positions 627 and 701 of the PB2 protein. A direct analysis of the viral RNAs of H5N1 viruses in patients revealed that these amino acids contribute to efficient virus propagation in the human upper respiratory tract. Viruses grown in culture or eggs did not always reflect those in patients. These results emphasize the importance of the direct analysis of original specimens.Given the continued circulation of highly pathogenic H5N1 avian influenza viruses and their sporadic transmission to humans, the threat of a pandemic persists. However, for H5N1 influenza viruses to be efficiently transmitted among humans, amino acid substitutions in the avian viral proteins may be necessary.Two positions in the PB2 protein affect the growth of influenza viruses in mammalian cells (3, 11, 18): the amino acid at position 627 (PB2-627), which in most human influenza viruses is lysine (PB2-627Lys) and most avian viruses is glutamic acid (PB2-627Glu), and the amino acid at position 701. PB2-627Lys is associated with the efficient replication (16) and high virulence (5) of H5N1 viruses in mice. Moreover, an H7N7 avian virus isolated from a fatal human case of pneumonia possessed PB2-627Lys, whereas isolates from a nonfatal human case of conjunctivitis and from chickens during the same outbreak possessed PB2-627Glu (2).The amino acid at position 701 in PB2 is important for the high pathogenicity of H5N1 viruses in mice (11). Most avian influenza viruses possess aspartic acid at this position (PB2-701Asp); however, A/duck/Guangxi/35/2001 (H5N1), which is highly virulent in mice (11), possesses asparagine at this position (PB2-701Asn). PB2-701Asn is also found in equine (4) and swine (15) viruses, as well as some H5N1 human isolates (7, 9). Thus, both amino acids appear to be markers for the adaptation of H5N1 viruses in humans (1, 3, 17).Massin et al. (13) reported that the amino acid at PB2-627 affects viral RNA replication in cultured cells at low temperatures. Recently, we demonstrated that viruses, including those of the H5N1 subtype, with PB2-627Lys (human type) grow better at low temperatures in cultured cells than those with PB2-627Glu (avian type) (6). This association between the PB2 amino acid and temperature-dependent growth correlates with the body temperatures of hosts; the human upper respiratory tract is at a lower temperature (around 33°C) than the lower respiratory tract (around 37°C) and the avian intestine, where avian influenza viruses usually replicate (around 41°C). The ability to replicate at low temperatures may be crucial for viral spread among humans via sneezing and coughing by being able to grow in the upper respiratory organs. Therefore, the Glu-to-Lys mutation in PB2-627 is an important step for H5N1 viruses to develop pandemic potential.However, there is no direct evidence that the substitutions of PB2-627Glu with PB2-627Lys and PB2-701Asp with PB2-701Asn occur during the replication of H5N1 avian influenza viruses in human respiratory organs. Therefore, here, we directly analyzed the nucleotide sequences of viral genes from several original specimens collected from patients infected with H5N1 viruses.  相似文献   

20.
Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype often cause severe pneumonia and multiple organ failure in humans, with reported case fatality rates of more than 60%. To develop a clinical antibody therapy, we generated a human-mouse chimeric monoclonal antibody (MAb) ch61 that showed strong neutralizing activity against H5N1 HPAI viruses isolated from humans and evaluated its protective potential in mouse and nonhuman primate models of H5N1 HPAI virus infections. Passive immunization with MAb ch61 one day before or after challenge with a lethal dose of the virus completely protected mice, and partial protection was achieved when mice were treated 3 days after the challenge. In a cynomolgus macaque model, reduced viral loads and partial protection against lethal infection were observed in macaques treated with MAb ch61 intravenously one and three days after challenge. Protective effects were also noted in macaques under immunosuppression. Though mutant viruses escaping from neutralization by MAb ch61 were recovered from macaques treated with this MAb alone, combined treatment with MAb ch61 and peramivir reduced the emergence of escape mutants. Our results indicate that antibody therapy might be beneficial in reducing viral loads and delaying disease progression during H5N1 HPAI virus infection in clinical cases and combined treatment with other antiviral compounds should improve the protective effects of antibody therapy against H5N1 HPAI virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号