首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ectonucleoside triphosphate diphosphohydrolase 1 (NTPDase1) activity present in alkaline phosphatase-depleted rat osseous plate membranes, obtained 14 days after implantation of demineralized bone particles in the subcutaneous tissue of Wistar rats, was characterized. At pH 7.5, NTPDase1 hydrolyzed nucleotide triphosphates at rates 2.4-fold higher than those of nucleotide diphosphates, while the hydrolysis of nucleotide monophosphates and non-nucleotide phosphates was negligible. NTPDase 1 hydrolyzed ATP and ADP following Michaelis-Menten kinetics with V=1278.7+/-38.4 nmol Pi/min/mg and K(M)=83.3+/-2.5 microM and V=473.9+/-18.9 nmol Pi/min/mg and K(M)=150.6+/-6.0 microM, respectively, but in the absence of magnesium and calcium ions, ATP or ADP hydrolysis was negligible. The stimulation of the NTPDase1 by calcium (V=1084.7+/-32.5 nmol Pi/min/mg; and K(M)=377.8+/-11.3 microM) and magnesium (V=1367.2+/-41.0 nmol Pi/min/mg and K(M)=595.3+/-17.8 microM) ions suggested that each ion could replace the other during the catalytic cycle of the enzyme. Oligomycin, ouabain, bafilomycin A(1), theophylline, thapsigargin, ethacrynic acid, P(1),P(5)-(adenosine-5')-pentaphosphate and omeprazole had negligible effects on the hydrolysis of ATP and ADP by NTPDase1. However, suramin and sodium azide were effective inhibitors of ATP and ADP hydrolysis.To our knowledge this is the first report suggesting the presence of NTPDase1 in rat osseous plate membranes. Considering that the ectonucleoside triphosphate diphosphohydrolase family of enzymes participates in many regulatory functions, such as response to hormones, growth control, and cell differentiation, the present observations raise interesting questions about the participation of this activity in the calcification process.  相似文献   

2.
3.
Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) comprise a novel family of ectonucleotidases that are important in the hydrolysis of extracellular nucleotides. The related NTPDase1 (ecto-apyrase) and NTPDase2 (ecto-ATPase) share a common membrane topography with a transmembrane domain at both the N- and C-terminus, an extensive extracellular loop with five 'apyrase conserved regions' (ACR1 to ACR5), and a cysteine-rich C-terminal region. Whereas NTPDase1 expressed in CHO cells hydrolyzes ATP and ADP equivalently, NTPDase2 has a high preference for the hydrolysis of ATP over ADP. In addition recombinant NTPDase1 hydrolyzes ATP to AMP with the formation of only minor amounts of free ADP. In contrast, ADP appears as the major free product when ATP is hydrolyzed by NTPDase2. In order to determine molecular domains responsible for these differences in catalytic properties, chimeric cDNAs were constructed in which N-terminal sequences of increasing length of NTPDase1 were substituted by the corresponding sequences of NTPDase2 and vice versa. The turnover points were contained within ACR1 to ACR5. Chimeric cDNAs were expressed in CHO cells and surface expression was verified by immunocytochemistry. ATP and ADP hydrolysis rates and ADP and AMP product formation were determined using HPLC. Amino-acid residues between ACR3 and ACR5 and in particular the cysteine-rich region between ACR4 and ACR5 conferred a phenotype to the chimeric enzymes that corresponded to the respective wild-type enzyme. Protein structure rather than the conserved ACRs may be of major relevance for determining differences in the catalytic properties between the related wild-type enzymes.  相似文献   

4.
5.
Gliomas are the most common and devastating type of primary brain tumor. Many non-neoplastic cells, including immune cells, comprise the tumor microenvironment where they create a milieu that appears to dictate cancer development. ATP and the phosphohydrolytic products ADP and adenosine by activating P2 and P1 receptors may participate in these interactions among malignant and immune cells. Purinergic receptor-mediated cell communication is closely regulated by ectonucleotidases, such as by members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family, which hydrolyze extracellular nucleotides. We have shown that gliomas, unlike astrocytes, exhibit low NTPDase activity. Furthermore, ATP induces glioma cell proliferation and the co-administration of apyrase decreases progression of injected cells in vivo. We have previously shown that NTPDase2 reconstitution dramatically increases tumor growth in vivo. Here we evaluated whether NTPDase2 reconstitution to gliomas modulates systemic inflammatory responses. We observed that NTPDase2 overexpression modulated pro-inflammatory cytokine production and platelet reactivity. Additionally, pathological alterations in the lungs were observed in rats bearing these tumors. Our results suggest that disruption of purinergic signaling via ADP accumulation creates an inflammatory state that may promote tumor spread and dictate clinical progression.  相似文献   

6.
This study aimed to characterize the activity of ectonucleoside triphosphate diphosphohydrolase (E‐NTPDase; EC 3.6.1.5) in peritoneal cavity cells from BALB/c mice. E‐NTPDase was activated in the presence of both calcium (1.5mM) and magnesium (1.5mM) ions. However, the activity was higher in the presence of Ca2+. A pH of 8.5 and temperature of 37°C were the optimum conditions for catalysis. The apparent Km values were 0.51mM and 0.66mM for the hydrolysis of adenosine triphosphate (ATP) and adenosine diphosphate (ADP), respectively. The Vmax values were 136.4 and 120.8 nmol Pi/min/mg of protein for ATPase and ADPase activity, respectively. Nucleotide hydrolysis was inhibited in the presence of sodium azide (20mM, ATP: P < .05; ADP: P < .001), sodium fluoride (20mM; ATP and ADP: P < .001), and suramin (0.3mM; ATP: P < .01; ADP: P < .05), which is a known profile for NTPDase inhibition. Although all of the diphosphate and triphosphate nucleotides that were tested were hydrolyzed, enzyme activity was increased when adenine nucleotides were used as substrates. Finally, we stress that knowledge of the E‐NTPDase catalytic biochemical properties in mouse peritoneal cavity cells is indispensable for properly determining its activity, as well as to fully understand the immune response profile in both healthy and sick cells.  相似文献   

7.
The protein family of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDase family) contains multiple members that hydrolyze nucleoside 5'-triphosphates and nucleoside 5'-diphosphates with varying preference for the individual type of nucleotide. We report the cloning and functional expression of rat NTPDase3. The rat brain-derived cDNA has an open reading frame of 1590 bp encoding 529 amino acid residues, a calculated molecular mass of 59.1 kDa and predicted N- and C-terminal hydrophobic sequences. It shares 94.3% and 81.7% amino acid identity with the mouse and human NTPDase3, respectively, and is more closely related to cell surface-located than to the intracellularly located members of the enzyme family. The NTPDase3 gene is allocated to chromosome 8q32 and organized into 11 exons. Rat NTPDase3 expressed in CHO cells hydrolyzed both nucleoside triphosphates and nucleoside diphosphates with hydrolysis ratios of ATP:ADP of 5:1 and UTP:UDP of 8:1. After addition of ATP, ADP is formed as an intermediate product that is further hydrolyzed to AMP. The enzyme is preferentially activated by Ca(2+) over Mg(2+) and reveals an alkaline pH optimum. Immunocytochemistry confirmed expression of heterologously expressed NTPDase3 to the surface of CHO cells. PC12 cells express endogenous surface-located NTPDase3. An immunoblot analysis detects NTPDase3 in all rat brain regions investigated. An alignment of the secondary structure domains of actin conserved within the actin/HSP70/sugar kinase superfamily to those of all members of the NTPDase family reveals apparent similarity. It infers that NTPDases share the two-domain structure with members of this enzyme superfamily.  相似文献   

8.
1. The metabolism of extracellular nucleotides in NG108-15 cells, a neuroblastoma × glioma hybrid cell line, was studied by means of capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MECC).2. In NG108-15 cells ATP, ADP, AMP, UTP, UDP, and UMP were hydrolyzed to the nucleosides adenosine and uridine indicating the presence of ecto-nucleotidases and ecto-phosphatases. The hydrolysis of the purine nucleotides ATP and ADP was significantly faster than the hydrolysis of the pyrimidine nucleotides UTP and UDP.3. ATP and UTP breakdown appeared to be mainly due to an ecto-nucleotide- diphosphohydrolase. ADP, but not UDP, was initially also phosphorylated to some extent to the corresponding triphosphate, indicating the presence of an adenylate kinase on NG108-15 cells. The alkaline phosphatase (ALP) inhibitor levamisole did not only inhibit the hydrolysis of AMP to adenosine and of UMP to uridine, but also the degradation of ADP and to a larger extent that of UDP. ATP and UTP degradation was only slightly inhibited by levamisole.4. These results underscore the important role of ecto-alkaline phosphatase in the metabolism of adenine as well as uracil nucleotides in NG108-15 cells. Dipyridamole, a potent inhibitor of nucleotide breakdown in superior cervical ganglion cells, had no effect on nucleotide degradation in NG108-15 cells.5. Dipyridamole, which is a therapeutically used nucleoside reuptake inhibitor in humans, reduced the extracellular adenosine accumulation possibly by allosteric enhancement of adenosine reuptake into the cells.  相似文献   

9.
Extracellular ATP and its hydrolysis product adenosine modulate various reproductive functions such as those requiring contraction, steroidogenesis, and maintenance of fluid composition. Interestingly, adenosine might act as a key capacitative effector for mammalian spermatozoa to acquire the capacity for fertilisation. Extracellular nucleotide levels are affected by cell surface ectonucleotidases, amongst which the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family regroups the most abundant and effective enzymes to hydrolyse ATP and ADP to AMP in physiological conditions. In the male reproductive tract three members of this family have been indentified: NTPDase1, NTPDase2 and NTPDase3 (Martín-Satué et al. in Histochem Cell Biol 131:615–628, 2009). The purpose of the present study was to characterize in the male reproductive tract the expression profile of the main enzyme responsible for the generation of adenosine from AMP, namely the ecto-5′-nucleotidase (CD73). The enzyme was identified by immunological techniques and by in situ enzymatic assays, including inhibition experiments with α,β-methylene-ADP, a specific CD73 inhibitor. High levels of ecto-5′-nucleotidase were detected in testes in association with both germinal and somatic cells, in smooth muscle cells throughout the tract, in secretory epithelia from exocrine glands, and remarkably, in principal cells of epididymis, where co-localization with NTPDase3 was found. The relevance of this co-expression on nucleotide hydrolysis in these cells directly involved in the control of sperm fluid composition was addressed biochemically. This study suggests close regulation of extracellular nucleoside and nucleotide levels in the genital tract by ecto-5′-nucleotidase that, in concurrence with NTPDases, may impact male fertility.  相似文献   

10.
CD39, the endothelial ecto-nucleoside triphosphate diphosphohydrolase (NTPDase), regulates vascular inflammation and thrombosis by hydrolyzing ATP and ADP. Although ecto-NTPDase activities have been used as a marker of epidermal dendritic cells (DCs) known as Langerhans cells, the identity and function of these activities remain unknown. Here we report that Langerhans cells in CD39-/- mice express no detectable ecto-NTPDase activity. Irritant chemicals triggered rapid ATP and ADP release from keratinocytes and caused exacerbated skin inflammation in CD39-/- mice. Paradoxically, T cell-mediated allergic contact hypersensitivity was severely attenuated in CD39-/- mice. As to mechanisms, T cells increased pericellular ATP concentrations upon activation, and CD39-/- DCs showed ATP unresponsiveness (secondary to P2-receptor desensitization) and impaired antigen-presenting capacity. Our results show opposing outcomes of CD39 deficiency in irritant versus allergic contact dermatitis, reflecting its diverse roles in regulating extracellular nucleotide-mediated signaling in inflammatory responses to environmental insults and DC-T cell communication in antigen presentation.  相似文献   

11.
Here we report the effects of metronidazole and tinidazole on NTPDase1 and ecto-5'-nucleotidase from intact cells of Trichomonas vaginalis. Adenosine triphosphate (ATP) and adenosine diphosphate (ADP) hydrolysis was 5- to 7-fold higher for the fresh clinical strain, when compared with the ATCC (American Type Culture Collection) strain. ATP hydrolysis was activated in the presence of metronidazole in the ATCC strain, whilst it was inhibited 33% by 50 microM tinidazole in a fresh clinical isolate. The treatment of cells in the presence of metronidazole for 2 h inhibited ATP and ADP hydrolysis, whilst treatment with tinidazole inhibited ATP and ADP hydrolysis only in the fresh clinical isolate. The drugs did not change the ecto-5'-nucleotidase activity for both strains. Our results suggest that the modulation of extracellular ATP and ADP levels during treatment with these drugs could be a parasitic defence strategy as a survival mechanism in an adverse environment.  相似文献   

12.
Degradation of extracellular ATP by the retinal pigment epithelium   总被引:6,自引:0,他引:6  
Stimulation of ATP or adenosine receptors causes important physiological changes in retinal pigment epithelial (RPE) cells that may influence their relationship to the adjacent photoreceptors. While RPE cells have been shown to release ATP, the regulation of extracellular ATP levels and the production of dephosphorylated purines is not clear. This study examined the degradation of ATP by RPE cells and the physiological effects of the adenosine diphosphate (ADP) that result. ATP was readily broken down by both cultured human ARPE-19 cells and the apical membrane of fresh bovine RPE cells. The compounds ARL67156and -mATP inhibited this degradation in both cell types. RT-PCR analysis of ARPE-19 cells found mRNA message for multiple extracellular degradative enzymes; ectonucleotide pyrophosphatase/phosphodiesterase eNPP1, eNPP2, and eNPP3; the ectoATPase ectonucleoside triphosphate diphosphohydrolase NTPDase2, NTPDase3, and some message for NTPDase1. Considerable levels of ADP bathed RPE cells, consistent with a role for NTPDase2. ADP and ATP increased levels of intracellular Ca2+. Both responses were inhibited by thapsigargin and P2Y1 receptor inhibitor MRS 2179. Message for both P2Y1 and P2Y12 receptors was detected in ARPE-19 cells. These results suggest that extracellular degradation of ATP in subretinal space can result in the production of ADP. This ADP can stimulate P2Y receptors and augment Ca2+ signaling in the RPE. ectoapyrase; PC-1; CD39; CD39L1; P2Y1; P2Y12; ADP; ATP release; photoreceptors; retinal detachment  相似文献   

13.
14.
A novel mammalian plasma membrane bound nucleoside triphosphate diphosphohydrolase (NTPDase), named NTPDase8, has been cloned and characterized. Analysis of cDNA reveals an open reading frame of 1491 base pairs encoding a protein of 497 amino acid residues with an estimated molecular mass of 54650 Da and a predicted isoelectric point of 5.94. In a mouse, the genomic sequence is located on chromosome 2A3 and is comprised of 10 exons. The deduced amino acid sequence reveals eight putative N-glycosylation sites, two transmembrane domains, five apyrase-conserved regions, and 20-50% amino acid identity with other mammalian NTPDases. mRNA expression was detected in liver, jejunum, and kidney. Both intact cells and crude cell lysates from COS-7 cells expressing NTPDase8 hydrolyzed P2 receptor agonists, namely, ATP, ADP, UTP, and UDP, but did not hydrolyze AMP. There was an absolute requirement for divalent cations for the catalytic activity (Ca(2+) > Mg(2+)) with an optimal pH between 5.5 and 8.0 for ATP and 6.4 for ADP hydrolysis. Kinetic parameters derived from analysis of crude cell lysates showed that the enzyme had lower apparent K(m) values for adenine nucleotides and for triphosphonucleosides (K(m,app) of 13 microM for ATP, 41 microM for ADP, 47 microM for UTP, and 171 microM for UDP). Hydrolysis of triphosphonucleosides resulted in a transient accumulation of the corresponding diphosphonucleoside, as expected from the apparent K(m) values. Enzymatic properties of NTPDase8 differ from those of other NTPDases suggesting an alternative way to modulate nucleotide levels and consequently P2 receptor activation.  相似文献   

15.
Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5′-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 μmol/5 μL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5′-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5′-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5′-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5′-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.  相似文献   

16.
The involvement of extracellular nucleotides and adenosine in an array of cell-specific responses has long been known and appreciated, but the integrative view of purinergic signalling as a multistep coordinated cascade has emerged recently. Current models of nucleotide turnover include: (i) transient release of nanomolar concentrations of ATP and ADP; (ii) triggering of signalling events via a series of ligand-gated (P2X) and metabotropic (P2Y) receptors; (iii) nucleotide breakdown by membrane-bound and soluble nucleotidases, including the enzymes of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) family, ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) family, ecto-5'-nucleotidase/CD73, and alkaline phosphatases; (iv) interaction of the resulting adenosine with own nucleoside-selective receptors; and finally, (v) extracellular adenosine inactivation via adenosine deaminase and purine nucleoside phosphorylase reactions and/or nucleoside uptake by the cells. In contrast to traditional paradigms that focus on purine-inactivating mechanisms, it has now become clear that "classical" intracellular ATP-regenerating enzymes, adenylate kinase, nucleoside diphosphate (NDP) kinase and ATP synthase can also be co-expressed on the cell surface. Furthermore, data on the ability of various cells to retain micromolar ATP levels in their pericellular space, as well as to release other related compounds (adenosine, UTP, dinucleotide polyphosphates and nucleotide sugars) gain another important insight into our understanding of mechanisms regulating a signalling cascade. This review summarizes recent advances in this rapidly evolving field, with particular emphasis on the nucleotide-releasing and purine-converting pathways in the vasculature.  相似文献   

17.
Phosphohydrolysis of extracellular ATP and ADP is an essential step in purinergic signaling that regulates key pathophysiological processes, such as those linked to inflammation. Classically, this reaction has been known to occur in the pericellular milieu catalyzed by membrane bound cellular ecto-nucleotidases, which can be released in the form of both soluble ecto-enzymes as well as being associated with exosomes. Circulating ecto-nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1/CD39) and adenylate kinase 1 (AK1) activities have been shown to be present in plasma. However, other ecto-nucleotidases have not been characterized in depth. An in vitro ADPase assay was developed to probe the ecto-enzymes responsible for the ecto-nucleotidase activity in human platelet-free plasma, in combination with various specific biochemical inhibitors. Identities of ecto-nucleotidases were further characterized by chromatography, immunoblotting, and flow cytometry of circulating exosomes. We noted that microparticle-bound E-NTPDases and soluble AK1 constitute the highest levels of ecto-nucleotidase activity in human plasma. All four cell membrane expressed E-NTPDases are also found in circulating microparticles in human plasma, inclusive of: CD39, NTPDase 2 (CD39L1), NTPDase 3 (CD39L3), and NTPDase 8. CD39 family members and other ecto-nucleotidases are found on distinct microparticle populations. A significant proportion of the microparticle-associated ecto-nucleotidase activity is sensitive to POM6, inferring the presence of NTPDases, either −2 or/and −3. We have refined ADPase assays of human plasma from healthy volunteers and have found that CD39, NTPDases 2, 3, and 8 to be associated with circulating microparticles, whereas soluble AK1 is present in human plasma. These ecto-enzymes constitute the bulk circulating ADPase activity, suggesting a broader implication of CD39 family and other ecto-enzymes in the regulation of extracellular nucleotide metabolism.  相似文献   

18.
ATP is an important excitatory neurotransmitter and adenosine acts as a neuromodulatory structure inhibiting neurotransmitters release in the central nervous system. Since the ecto-nucleotidase cascade that hydrolyzes ATP to adenosine is involved in the control of brain functions and previous studies realized in our laboratory have recently reported that acute administration of Arg decreases the NTPDase and 5′-nucleotidase activities of rat blood serum, in the present study we investigated the effect of arginine administration on NTPDase and 5′-nucleotidase activities by synaptosomes from hippocampus of rats. First, sixty-days-old rats were treated with a single or a triple intraperitoneal injection of arginine (0.8 g/Kg) or an equivalent volume of 0.9% saline solution (control) and were killed 1 h later. Second, rats received an intracerebroventricular injection of 1.5 mM arginine solution or saline (5 μL) and were killed 1 h later. We also tested the in vitro effect of arginine (0.1–1.5 mM) on nucleotide hydrolysis in synaptosomes from rat hippocampus. Results showed that intraperitoneal arginine administration did not alter nucleotide hydrolysis. On the other hand, arginine administered intracerebroventricularly reduced ATP (32%), ADP (30%) and AMP (21%) hydrolysis, respectively. In addition, arginine added to the incubation medium, provoked a decrease on ATP (19%), ADP (17%) and AMP (23%) hydrolysis, respectively. Furthermore, kinetic studies showed that the inhibitory effect of arginine was uncompetitive in relation to ATP, ADP and AMP. In conclusion, according to our results it seems reasonable to postulate that arginine alters the cascade involved in the extracellular degradation of ATP to adenosine.  相似文献   

19.
Nucleotides, e.g. ATP and ADP, are important signaling molecules, which elicit several biological responses. The degradation of nucleotides is catalyzed by a family of enzymes called NTPDases (nucleoside triphosphate diphosphohydrolases). The present study reports the enzymatic properties of a NTPDase (CD39, apyrase, ATP diphosphohydrolase) in brain membranes of zebrafish (Danio rerio). This enzyme was cation-dependent, with a maximal rate for ATP and ADP hydrolysis in a pH range of 7.5-8.0 in the presence of Ca(2+) (5 mM). The enzyme displayed a maximal activity for ATP and ADP hydrolysis at 37 degrees C. It was able to hydrolyze purine and pyrimidine nucleosides 5'-di and triphosphates, being insensitive to classical ATPase inhibitors, such as ouabain (1 mM), N-ethylmaleimide (0.1 mM), orthovanadate (0.1 mM) and sodium azide (0.1 mM). A significant inhibition of ATP and ADP hydrolysis (68% and 34%, respectively) was observed in the presence of 20 mM sodium azide, used as a possible inhibitor of ATP diphosphohydrolase. Levamisole (1 mM) and tetramisole (1 mM), specific inhibitors of alkaline phosphatase and P1, P(5)-di (adenosine 5'-) pentaphosphate, an inhibitor of adenylate kinase did not alter the enzyme activity. The presence of a NTPDase in brain membranes of zebrafish may be important for the modulation of nucleotide and nucleoside levels, controlling their actions on specific purinoceptors in central nervous system of this specie.  相似文献   

20.
The degradation of nucleotides is catalyzed by the family of enzymes called nucleoside triphosphate diphosphohydrolases (NTPDases). The aim of this work was to demonstrate the presence of NTPDase in the rat gastric mucosa. The enzyme was found to hydrolyze ATP and ADP at an optimum pH of 8.0 in the presence of Mg2+ and Ca2+. The inhibitors ouabain (0.01-1 mM), N-ethylmaleimide (0.01-4 mM), levamisole (0.10-0.2 mM) and Ap5A (0.03 mM) had no effect on NTPDase 1 activity. Sodium azide (0.03-30 mM), at high concentrations (>0.1 mM), caused a parallel hydrolysis inhibition of ATP and ADP. Suramin (50-300 microM) inhibited ATP and ADP hydrolysis at all concentrations tested. Orthovanadate slightly inhibited (15%) Mg2+ and Ca2+ ATP/ADPase at 100 microM. Lanthanum decreased Mg2+ and Ca2+ ATP/ADPase activities. The presence of NTPDase as ecto-enzyme in the gastric mucosa may have an important role in the extracellular metabolism of nucleotides, suggesting that this enzyme plays a role in the control of acid and pepsin secretion, mucus production, and contractility of the stomach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号