首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue invasive helminth infections and tuberculosis (TB) are co-endemic in many parts of the world and can trigger immune responses that might antagonize each other. We have previously shown that helminth infections modulate the Th1 and Th17 responses to mycobacterial-antigens in latent TB. To determine whether helminth infections modulate antigen-specific and non-specific immune responses in active pulmonary TB, we examined CD4+ and CD8+ T cell responses as well as the systemic (plasma) cytokine levels in individuals with pulmonary TB with or without two distinct helminth infections—Wuchereria bancrofti and Strongyloides stercoralis infection. By analyzing the frequencies of Th1 and Th17 CD4+ and CD8+ T cells and their component subsets (including multifunctional cells), we report a significant diminution in the mycobacterial–specific frequencies of mono- and multi–functional CD4+ Th1 and (to a lesser extent) Th17 cells when concomitant filarial or Strongyloides infection occurs. The impairment in CD4+ and CD8+ T cell cytokine responses was antigen-specific as polyclonal activated T cell frequencies were equivalent irrespective of helminth infection status. This diminution in T cell responses was also reflected in diminished circulating levels of Th1 (IFN-γ, TNF-α and IL-2)- and Th17 (IL-17A and IL-17F)-associated cytokines. Finally, we demonstrate that for the filarial co-infections at least, this diminished frequency of multifunctional CD4+ T cell responses was partially dependent on IL-10 as IL-10 blockade significantly increased the frequencies of CD4+ Th1 cells. Thus, co-existent helminth infection is associated with an IL-10 mediated (for filarial infection) profound inhibition of antigen-specific CD4+ T cell responses as well as protective systemic cytokine responses in active pulmonary TB.  相似文献   

2.

Background

Chronic helminth infections induce a Th2 immune shift and establish an immunoregulatory milieu. As both of these responses can suppress Th1 immunity, which is necessary for control of Mycobacterium tuberculosis (MTB) infection, we hypothesized that chronic helminth infections may exacerbate the course of MTB.

Methodology/Principal Findings

Co-infection studies were conducted in cotton rats as they are the natural host for the filarial nematode Litomosoides sigmodontis and are an excellent model for human MTB. Immunogical responses, histological studies, and quantitative mycobacterial cultures were assessed two months after MTB challenge in cotton rats with and without chronic L. sigmodontis infection. Spleen cell proliferation and interferon gamma production in response to purified protein derivative were similar between co-infected and MTB-only infected animals. In contrast to our hypothesis, MTB loads and occurrence and size of lung granulomas were not increased in co-infected animals.

Conclusions/Significance

These findings suggest that chronic filaria infections do not exacerbate MTB infection in the cotton rat model. While these results suggest that filaria eradication programs may not facilitate MTB control, they indicate that it may be possible to develop worm-derived therapies for autoimmune diseases that do not substantially increase the risk for infections.  相似文献   

3.
The mechanisms underlying the modulation of both the malaria-specific immune response and the course of clinical malaria in the context of concomitant helminth infection are poorly understood. We used multiparameter flow cytometry to characterize the quality and the magnitude of malaria-specific T cell responses in filaria-infected and -uninfected individuals with concomitant asymptomatic Plasmodium falciparum malaria in Mali. In comparison with filarial-uninfected subjects, filarial infection was associated with higher ex vivo frequencies of CD4(+) cells producing IL-4, IL-10, and IL-17A (p = 0.01, p = 0.001, and p = 0.03, respectively). In response to malaria Ag stimulation, however, filarial infection was associated with lower frequencies of CD4(+) T cells producing IFN-γ, TNF-α, and IL-17A (p < 0.001, p = 0.04, and p = 0.04, respectively) and with higher frequencies of CD4(+)IL10(+)T cells (p = 0.0005). Importantly, filarial infection was associated with markedly lower frequencies of malaria Ag-specific Th1 (p < 0.0001), Th17 (p = 0.012), and "TNF-α" (p = 0.0008) cells, and a complete absence of malaria-specific multifunctional Th1 cells. Filarial infection was also associated with a marked increase in the frequency of malaria-specific adaptive regulatory T/Tr1 cells (p = 0.024), and the addition of neutralizing anti-IL-10 Ab augmented the amount of Th1-associated cytokine produced per cell. Thus, among malaria-infected individuals, concomitant filarial infection diminishes dramatically the frequencies of malaria-specific Th1 and Th17 T cells, and alters the quality and magnitude of malaria-specific T cell responses.  相似文献   

4.
Filarial nematodes achieve long survival in their hosts due to their capacity to modulate immune responses. Therefore, immunomodulation by filarial nematodes may alter responses to concomitant infections such as malaria. Cerebral malaria (CM), a severe complication of Plasmodium falciparum infections, is triggered as a consequence of the immune response developed against malaria parasites. The question arises whether prior infection with helminth parasites is beneficial against CM. In the present work a murine model for subsequent has been used to assess this hypothesis. C57BL/6 mice were infected with the rodent filarial parasite Litomosoides sigmodontis and the murine model parasite for CM, Plasmodium berghei ANKA. Previously filaria-infected C57BL/6 mice showed significantly reduced CM rates. CD8+ T cell recruitment to the brain, a hallmark for CM development, was reduced in protected mice. Furthermore, in contrast to P. berghei single-infected animals, filaria-infected mice had significantly higher levels of circulating IL-10. The requirement for IL-10 in CM protection was demonstrated by the lack of protection in IL-10 KO mice. This suggests that the anti-inflammatory IL-10 elicited by filarial nematodes is able to suppress the overwhelming inflammatory reaction otherwise triggered against malaria parasites in C57BL/6 mice, preventing full progress to CM.  相似文献   

5.
Chronic helminth infections such as filariasis in human hosts can be life long, since parasites are equipped with a repertoire of immune evasion strategies. In many areas where helminths are prevalent, other infections such as malaria are co-endemic. It is still an ongoing debate, how one parasite alters immune responses against another. To dissect the relationships between two different parasites residing in the same host, we established a murine model of co-infection with the filarial nematode Litomosoides sigmodontis and the malaria parasite Plasmodium berghei (ANKA strain). We found that filarial infection of BALB/c mice leads to protection against a subsequent P. berghei sporozoite infection in one-third of co-infected mice, which did not develop blood-stage malaria. This finding did not correlate with adult worm loads, however it did correlate with the presence of microfilariae in blood. Interestingly, protection was abrogated in IL-10-deficient mice. Thus, murine filariasis, in particular when it is a patent infection, is able to modify the immunological balance to induce protection against an otherwise deadly Plasmodium infection and is therefore able to influence the course of malaria in favour of the host.  相似文献   

6.

Background

The PD-1 axis is a cell intrinsic immunoregulatory pathway that mediates T cell exhaustion in chronic infection particularly in some viral infections. We hypothesized that PD-1, PD-L1 and PD-L2 would be highly expressed in untreated tuberculosis patients compared to controls due to their chronic infection and would decrease with successful TB treatment.

Materials and Methods

Untreated tuberculosis patients (n = 26) were recruited at diagnosis and followed up during treatment. Household contacts (n = 24) were recruited to establish baseline differences. Blood gene expression ex vivo was investigated using qRT-PCR. Flow cytometry was performed to establish protein expression patterns.

Results

PD-L1 gene expression was found to be elevated in active TB disease; however, this was not observed for PD-1 or PD-L2. The intensive phase of TB treatment was associated with a significant decline in PD-1, PD-L1 and PD-L2 gene expression. PD-1 protein expression on the surface of NK cells, CD8+ and CD4+ T cells was similar in patients with active TB disease compared to controls but declined with successful TB treatment, with the greatest decline occurring on the NK cells followed by CD8+ T cells and then CD4+ T cells. Granzyme B/PD-1 co-expression declined with successful intensive phase treatment.

Conclusion

Modulation of PD-1/PD-L1 pathway through TB treatment indicates changes in the peripheral T cell response caused by live Mycobacterium tuberculosis (Mtb) followed by the response to dead bacilli, antigen-release and immuno-pathology resolution. The PD-1 axis could be a host drug target for immunomodulatory treatments in the future.  相似文献   

7.
Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4-deficient NOD mice and whether depletion or absence of regulatory T cells, IL-10, or TGF-β alters helminth-mediated protection. In contrast to IL-4-competent NOD mice, IL-4-deficient NOD mice failed to develop a type 2 shift in either cytokine or Ab production during L. sigmodontis infection. Despite the absence of a type 2 immune shift, infection of IL-4-deficient NOD mice with L. sigmodontis prevented diabetes onset in all mice studied. Infections in immunocompetent and IL-4-deficient NOD mice were accompanied by increases in CD4(+)CD25(+)Foxp3(+) regulatory T cell frequencies and numbers, respectively, and helminth infection increased the proliferation of CD4(+)Foxp3(+) cells. However, depletion of CD25(+) cells in NOD mice or Foxp3(+) T cells from splenocytes transferred into NOD.scid mice did not decrease helminth-mediated protection against diabetes onset. Continuous depletion of the anti-inflammatory cytokine TGF-β, but not blockade of IL-10 signaling, prevented the beneficial effect of helminth infection on diabetes. Changes in Th17 responses did not seem to play an important role in helminth-mediated protection against autoimmunity, because helminth infection was not associated with a decreased Th17 immune response. This study demonstrates that L. sigmodontis-mediated protection against diabetes in NOD mice is not dependent on the induction of a type 2 immune shift but does require TGF-β.  相似文献   

8.
Activation of the programmed cell death protein 1 and programmed cell death ligand 1 (PD-1/PD-L1) signaling axis plays important roles in intrinsic or acquired resistance to human epidermal growth factor receptor 2 (HER2)-directed therapies in the clinic. Therefore, therapies simultaneously targeting both HER2 and PD-1/PD-L1 signaling pathways are of great significance. Here, aiming to direct the anti-PD-L1 responses toward HER2-expressing tumor cells, we constructed a humanized bispecific IgG1 subclass antibody targeting both HER2 and PD-L1 (HER2/PD-L1; BsAb), which displayed satisfactory purity, thermostability, and serum stability. We found that BsAb showed enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) activity in vitro. In the late phase of peripheral blood mononuclear cell (PBMC)-humanized HER2+ tumor xenograft models, BsAb showed superior therapeutic efficacies as compared with monoclonal antibodies (mAbs) or combination treatment strategies. In cynomolgus monkeys, BsAb showed favorable pharmacokinetics and toxicity profiles when administered at a 10 mg/kg dosage. Thus, HER2/PD-L1 BsAb was demonstrated as a potentially effective option for managing HER2+ and trastuzumab-resistant tumors in the clinic. We propose that the enhanced antitumor activities of BsAb in vivo may be due to direct inhibition of HER2 signaling or activation of T cells.  相似文献   

9.
Chronic helminth infections induce a type 2 immune response characterized by eosinophilia, high levels of IgE, and increased T cell production of type 2 cytokines. Because basophils have been shown to be substantial contributors of IL-4 in helminth infections, and because basophils are capable of inducing Th2 differentiation of CD4(+) T cells and IgE isotype switching in B cells, we hypothesized that basophils function to amplify type 2 immune responses in chronic helminth infection. To test this, we evaluated basophil function using the Litomosoides sigmodontis filaria model of chronic helminth infection in BALB/c mice. Time-course studies showed that eosinophilia, parasite Ag-specific CD4(+) T cell production of IL-4 and IL-5 and basophil activation and IL-4 production in response to parasite Ag all peak late (6-8 wk) in the course of L. sigmodontis infection, after parasite-specific IgE has become detectable. Mixed-gender and single-sex worm implantation experiments demonstrated that the relatively late peak of these responses was not dependent on the appearance of circulating microfilariae, but may be due to initial low levels of parasite Ag load and/or habitation of the developing worms in the pleural space. Depletion of basophils throughout the course of L. sigmodontis infection caused significant decreases in total and parasite-specific IgE, eosinophilia, and parasite Ag-driven CD4(+) T cell proliferation and IL-4 production, but did not alter total worm numbers. These results demonstrate that basophils amplify type 2 immune responses, but do not serve a protective role, in chronic infection of mice with the filarial nematode L. sigmodontis.  相似文献   

10.
The balance between pro-inflammatory and regulatory immune responses in determining optimal T cell activation is vital for the successful resolution of microbial infections. This balance is maintained in part by the negative regulators of T cell activation, CTLA-4 and PD-1/PD-L, which dampen effector responses during chronic infections. However, their role in acute infections, such as malaria, remains less clear. In this study, we determined the contribution of CTLA-4 and PD-1/PD-L to the regulation of T cell responses during Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM) in susceptible (C57BL/6) and resistant (BALB/c) mice. We found that the expression of CTLA-4 and PD-1 on T cells correlates with the extent of pro-inflammatory responses induced during PbA infection, being higher in C57BL/6 than in BALB/c mice. Thus, ECM develops despite high levels of expression of these inhibitory receptors. However, antibody-mediated blockade of either the CTLA-4 or PD-1/PD-L1, but not the PD-1/PD-L2, pathways during PbA-infection in ECM-resistant BALB/c mice resulted in higher levels of T cell activation, enhanced IFN-γ production, increased intravascular arrest of both parasitised erythrocytes and CD8+ T cells to the brain, and augmented incidence of ECM. Thus, in ECM-resistant BALB/c mice, CTLA-4 and PD-1/PD-L1 represent essential, independent and non-redundant pathways for maintaining T cell homeostasis during a virulent malaria infection. Moreover, neutralisation of IFN-γ or depletion of CD8+ T cells during PbA infection was shown to reverse the pathologic effects of regulatory pathway blockade, highlighting that the aetiology of ECM in the BALB/c mice is similar to that in C57BL/6 mice. In summary, our results underscore the differential and complex regulation that governs immune responses to malaria parasites.  相似文献   

11.
Litomosoides sigmodontis is a filarial nematode that is used as a mouse model for human filarial infections. The life cycle of L. sigmodontis comprises rodents as definitive hosts and tropical rat mites as alternate hosts. Here, we describe a method of infecting mice with third stage larvae (L3) extracted from the pleural space of recently infected jirds (Meriones unguiculatus). This method enables infection of mice with a known number of L3 larvae without the time-consuming dissection of L3 larvae from mites and results in higher worm recovery and patency rates than conventional methods. Additionally, this method allows for geographical separation of the facility maintaining the L. sigmodontis life cycle from the institution at which mice are infected.  相似文献   

12.
Recent evidence demonstrates that HIV-1 infection leads to the attenuation of cellular immune responses, which has been correlated with the increased expression of programmed death (PD)-1 on virus-specific CD8(+) T cells. PD-1 is induced upon T cell activation, and its prolonged expression facilitates CD8(+) T cell inhibitory signals when bound to its B7 family ligands, PD-ligand (L)1/2, which are expressed on APCs. Importantly, early reports demonstrated that blockade of the PD-1/PD-L interaction by Abs may help to counter the development of immune exhaustion driven by HIV viral persistence. To better understand the regulation of the PD-1 pathway during HIV infection, we examined the ability of the virus to induce PD-L expression on macrophages and dendritic cells. We found a direct relationship between the infection of APCs and the expression of PD-L1 in which virus-mediated upregulation induced a state of nonresponsiveness in uninfected HIV-specific T cells. Furthermore, this exhaustion phenotype was revitalized by the blockade of PD-L1, after which T cells regained their capacity for proliferation and the secretion of proinflammatory cytokines IFN-γ, IL-2, and IL-12 upon restimulation. In addition, we identify a critical role for the PI3K/serine-threonine kinase signaling pathway in PD-L1 upregulation of APCs by HIV, because inhibition of these intracellular signal transducer enzymes significantly reduced PD-L1 induction by infection. These data identify a novel mechanism by which HIV exploits the immunosuppressive PD-1 pathway and suggest a new role for virus-infected cells in the local corruption of immune responses required for viral suppression.  相似文献   

13.

Background

Programmed Death-1 (PD-1; CD279) receptor molecule is widely believed to be a negative regulator predominantly expressed by exhausted/activated mouse T cells. Upon interaction with its ligands, PD-L1 and PD-L2, PD-1 inhibits activation of T cells and cytokine production, which has been documented in various viral and fungal infections as well as in vitro studies. Therefore, inhibition of T cell responses by PD-1 resulted in disease resistance in a variety of mouse infection models studied heretofore.

Methodology/Principal Findings

Here, we report that PD-1 deficient (PD-1−/−) mice infected with Mycobacterium tuberculosis (M. tb) H37Rv by the aerosol route have increased susceptibility as compared with their wild type littermates. Surprisingly, M. tb antigen-specific T cell proliferation was dramatically reduced in PD-1 deficient animals compared with wild-type littermates, and this was due to increased numbers of regulatory T cells (Tregs) and recruitment of mesenchymal stem cells. Furthermore, PD-1−/− mice exhibited decreases in the autophagy-induced LC3-B marker protein in macrophages.

Conclusions/Significance

Our findings suggest that PD-1 does not play an inhibitory role during M. tb infection and instead promotes mycobacterial clearance in mice.  相似文献   

14.
IL-6 has a wide range of biological activities that includes anti- and pro-inflammatory aspects. In this study, we investigated the role of IL-6 in immune responses to the rodent filarial nematode Litomosoides sigmodontis, a model for human filarial infections. IL-6?/? mice had a significantly increased worm burden after natural infection compared with wild type controls at early time points p.i. Given that the worm burden in IL-6?/? mice was already increased at the time point the infective larvae reached the pleural cavity, immune responses that may facilitate the migration from the site of infection (skin) via the lymphatics to the pleural cavity were analysed. Increased vascular permeability may facilitate larval migration, but blocking of histamine receptors had no effect on worm burden and vascular permeability was similar between IL-6?/? mice and wild type controls. In contrast, blocking mast cell degranulation reduced the worm burden in IL-6?/? mice partially, suggesting that release of mast cell-derived mediators improves larval migration to some degree. Protective immune responses within the skin were involved, as bypassing the skin barrier by inoculating infective L3s subcutaneously resulted in a comparable worm recovery in both mouse strains. Analysis of the cellular composition by flow cytometry and PCR array in the skin after exposure to filarial extract or L3s, respectively, indicate that the absence of IL-6 results in a delayed recruitment of neutrophils and macrophages to the site of initial infection. These results demonstrate that IL-6 is essentially involved in protective immune responses within the skin that impair migration of infective L3s.  相似文献   

15.

Background

Th9 cells are a subset of CD4+ T cells that express the protoypical cytokine, IL-9. Th9 cells are known to effect protective immunity in animal models of intestinal helminth infections. However, the role of Th9 cells in human intestinal helminth infections has never been examined.

Methodology

To examine the role of Th9 cells in Strongyloidis stercoralis (Ss), a common intestinal helminth infection, we compared the frequency of Th9 expressing IL-9 either singly (mono-functional) or co-expressing IL-4 or IL-10 (dual-functional) in Ss-infected individuals (INF) to frequencies in uninfected (UN) individuals.

Principal Findings

INF individuals exhibited a significant increase in the spontaneously expressed and/or antigen specific frequencies of both mono- and dual-functional Th9 cells as well as Th2 cells expressing IL-9 compared to UN. The differences in Th9 induction between INF and UN individuals was predominantly antigen-specific as the differences were no longer seen following control antigen or mitogen stimulation. In addition, the increased frequency of Th9 cells in response to parasite antigens was dependent on IL-10 and TGFx since neutralization of either of these cytokines resulted in diminished Th9 frequencies. Finally, following successful treatment of Ss infection, the frequencies of antigen-specific Th9 cells diminished in INF individuals, suggesting a role for the Th9 response in active Ss infection. Moreover, IL-9 levels in whole blood culture supernatants following Ss antigen stimulation were higher in INF compared to UN individuals.

Conclusion

Thus, Ss infection is characterized by an IL-10- and TGFβ dependent expansion of Th9 cells, an expansion found to reversible by anti-helmintic treatment.  相似文献   

16.
Hepatitis B virus (HBV) persistence is facilitated by exhaustion of CD8 T cells that express the inhibitory receptor programmed cell death-1 (PD-1). Improvement of the HBV-specific T cell function has been obtained in vitro by inhibiting the PD-1/PD-ligand 1 (PD-L1) interaction. In this study, we examined whether in vivo blockade of the PD-1 pathway enhances virus-specific T cell immunity and leads to the resolution of chronic hepadnaviral infection in the woodchuck model. The woodchuck PD-1 was first cloned, characterized, and its expression patterns on T cells from woodchucks with acute or chronic woodchuck hepatitis virus (WHV) infection were investigated. Woodchucks chronically infected with WHV received a combination therapy with nucleoside analogue entecavir (ETV), therapeutic DNA vaccination and woodchuck PD-L1 antibody treatment. The gain of T cell function and the suppression of WHV replication by this therapy were evaluated. We could show that PD-1 expression on CD8 T cells was correlated with WHV viral loads during WHV infection. ETV treatment significantly decreased PD-1 expression on CD8 T cells in chronic carriers. In vivo blockade of PD-1/PD-L1 pathway on CD8 T cells, in combination with ETV treatment and DNA vaccination, potently enhanced the function of virus-specific T cells. Moreover, the combination therapy potently suppressed WHV replication, leading to sustained immunological control of viral infection, anti-WHs antibody development and complete viral clearance in some woodchucks. Our results provide a new approach to improve T cell function in chronic hepatitis B infection, which may be used to design new immunotherapeutic strategies in patients.  相似文献   

17.
The programmed death (PD)-1 molecule and its ligands (PD-L1 and PD-L2), negative regulatory members of the B7 family, play an important role in peripheral tolerance. Previous studies have demonstrated that PD-1 is up-regulated on T cells following TCR-mediated activation; however, little is known regarding PD-1 and Ag-independent, cytokine-induced T cell activation. The common gamma-chain (gamma c) cytokines IL-2, IL-7, IL-15, and IL-21, which play an important role in peripheral T cell expansion and survival, were found to up-regulate PD-1 and, with the exception of IL-21, PD-L1 on purified T cells in vitro. This effect was most prominent on memory T cells. Furthermore, these cytokines induced, indirectly, the expression of PD-L1 and PD-L2 on monocytes/macrophages in PBMC. The in vivo correlate of these observations was confirmed on PBMC isolated from HIV-infected individuals receiving IL-2 immunotherapy. Exposure of gamma c cytokine pretreated T cells to PD-1 ligand-IgG had no effect on STAT5 activation, T cell proliferation, or survival driven by gamma c cytokines. However, PD-1 ligand-IgG dramatically inhibited anti-CD3/CD28-driven proliferation and Lck activation. Furthermore, following restimulation with anti-CD3/CD28, cytokine secretion by both gamma c cytokine and anti-CD3/CD28 pretreated T cells was suppressed. These data suggest that gamma c cytokine-induced PD-1 does not interfere with cytokine-driven peripheral T cell expansion/survival, but may act to suppress certain effector functions of cytokine-stimulated cells upon TCR engagement, thereby minimizing immune-mediated damage to the host.  相似文献   

18.
19.
Although CD4 T cells are required for host resistance to Mycobacterium tuberculosis, they may also contribute to pathology. In this study, we examine the role of the inhibitory receptor PD-1 and its ligand PD-L1 during M. tuberculosis infection. After aerosol exposure, PD-1 knockout (KO) mice develop high numbers of M. tuberculosis-specific CD4 T cells but display markedly increased susceptibility to infection. Importantly, we show that CD4 T cells themselves drive the increased bacterial loads and pathology seen in infected PD-1 KO mice, and PD-1 deficiency in CD4 T cells is sufficient to trigger early mortality. PD-L1 KO mice also display enhanced albeit less severe susceptibility, indicating that T cells are regulated by multiple PD ligands during M. tuberculosis infection. M. tuberculosis-specific CD8 T cell responses were normal in PD-1 KO mice, and CD8 T cells only had a minor contribution to the exacerbated disease in the M. tuberculosis-infected PD-1 KO and PD-L1 KO mice. Thus, in the absence of the PD-1 pathway, M. tuberculosis benefits from CD4 T cell responses, and host resistance requires inhibition by PD-1 to prevent T cell-driven exacerbation of the infection.  相似文献   

20.

Introduction

The aim of this study was to investigate PD-1/PD-L1 involvement in the hyporesponsiveness of rheumatoid arthritis (RA) synovial fluid (SF) CD4 T cells upon stimulation by thymic stromal lymphopoietin (TSLP)–primed CD1c myeloid dendritic cells (mDCs).

Methods

Expression of PD-1 on naïve (Tn), central memory (Tcm) and effector memory (Tem) CD4 T cell subsets was assessed by flow cytometry. PD-L1 expression and its regulation upon TSLP stimulation of mDCs from peripheral blood (PB) and SF of RA patients were investigated by quantitative RT-PCR and flow cytometry. The involvement of PD-1/PD-L1 interactions in SF T cell hyporesponsiveness upon (TSLP-primed) mDC activation was determined by cell culture in the presence of PD-1 blocking antibodies, with or without interleukin 7 (IL-7) as a recognized suppressor of PD-1 expression.

Results

PD-1 expression was increased on CD4 T cells derived from SF compared with PB of RA patients. TSLP increased PD-L1 mRNA expression in both PB and SF mDCs. PD-L1 protein expression was increased on SF mDCs compared with PB mDCs and was associated with T cell hyporesponsiveness. Blockade of PD-1, as well as IL-7 stimulation, during cocultures of memory T cells and (TSLP-primed) mDCs from RA patients significantly recovered T cell proliferation.

Conclusion

SF T cell hyporesponsiveness upon (TSLP-primed) mDC stimulation in RA joints is partially dependent on PD-1/PD-L1 interactions, as PD-1 and PD-L1 are both highly expressed on SF T cells and mDCs, respectively, and inhibiting PD-1 availability restores T cell proliferation. The potential of IL-7 to robustly reverse this hyporesponsiveness suggests that such proinflammatory cytokines in RA joints strongly contribute to memory T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号