首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The soluble ectodomain of fibroblast growth factor receptor-IIIc (sFGFR2c) is able to bind to fibroblast growth factor (FGF) ligands and block the activation of the FGF-signaling pathway. In this study, sFGFR2c inhibited lung fibrosis dramatically in vitro and in vivo. The upregulation of α-smooth muscle actin (α-SMA) in fibroblasts by transforming growth factor-β1 (TGF-β1) is an important step in the process of lung fibrosis, in which FGF-2, released by TGF-β1, is involved. sFGFR2c inhibited α-SMA induction by TGF-β1 via both the extracellular signal-regulated kinase 1/2 (ERK1/2) and Smad3 pathways in primary mouse lung fibroblasts and the proliferation of mouse lung fibroblasts. In a mouse model of bleomycin (BLM)-induced lung fibrosis, mice were treated with sFGFR2c from d 3 or d 10 to 31 after BLM administration. Then we used hematoxylin and eosin staining, Masson staining and immunohistochemical staining to evaluate the inhibitory effects of sFGFR2c on lung fibrosis. The treatment with sFGFR2c resulted in significant attenuation of the lung fibrosis score and collagen deposition. The expression levels of α-SMA, p-FGFRs, p-ERK1/2 and p-Smad3 in the lungs of sFGFR2c-treated mice were markedly lower. sFGFR2c may have potential for the treatment of lung fibrosis as an FGF-2 antagonist.  相似文献   

2.
The principle of producing bronchial lavage by deposition of large amounts of heated aerosol has resulted in a significantly greater yield of positive cytologic diagnosis of bronchogenic carcinoma than with repeated “volunteer” specimens of sputum. Positive pressure plus bronchodilators augments greater sputum volume.Using this technique, cases in which results of bronchoscopy and aspiration biopsy were negative for malignant change, were diagnosed cytologically.Application of this technique can sometimes detect early lung carcinoma before roentgenographic changes are detectable. Positive tests in clinically far advanced disease may prevent unnecessary surgical intervention.The simplicity of the technique, the freedom from adverse reactions, and its wide acceptance by the subjects tested, make it valuable in the diagnosis of lung cancer.  相似文献   

3.

Objective

To ascertain if levosimendan postconditioning can alleviate lung ischemia–reperfusion injury (LIRI) in rats.

Method

One hundred rats were divided into five groups: Sham (sham), ischemia–reperfusion group (I/R group), ischemic postconditioning (IPO group), levosimendan postconditioning (Levo group) and combination postconditioning group of levosimendan and 5-Hydroxydecanoic acid (Levo+5-HD group). The apoptotic index (AI) of lung tissue cells was determined using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Expression of active cysteine aspartate specific protease-3 ( active caspase-3), Bcl-2 and Bax in lung tissue was determined by immunohistochemical staining. The morphopathology of lung tissue was observed using light and electron microscopy.

Results

AI values and expression of active caspase-3, Bcl-2 and Bax of lung tissue in I/R and Levo+5-HD groups were significantly higher than those in the sham group ( P<0.05). AI values and expression of active caspase-3 and Bax were significantly lower, whereas that of Bcl-2 was higher significantly in the Levo group, compared with I/R and Levo+5-HD groups (P<0.05). Significant differences were not observed in comparisons between I/R and Levo+5-HD groups as well as IPO and Levo groups.

Conclusion

LIRI can be alleviated by levosimendan, which simulates an IPO protective function. A postulated lung-protective mechanism of action could involve opening of mitochondrial adenosine triphosphate-sensitive potassium channels, relieving Ca2+ overload, upregulation of expression of Bcl-2, and downregulation of expression of active caspase-3 and Bax.  相似文献   

4.
β-Catenin plays dual role in adhesion complex formation and the Wnt signaling pathway. Although β-catenin expression appears to be upregulated and Wnt signaling pathway is activated in the majority of cancers, its expression level seems to be lost in non-small cell lung cancer (NSCLC). We previously reported that the promoter of β-catenin was hypermethylated in two NSCLC cell lines. In the current study, we expanded our analysis for the methylation status of β-catenin promoter region and its protein expression in seven NSCLC cell lines and a series of 143 cases of primary human lung cancer with adjacent non-neoplastic tissues. Quantitative methylation specific PCR (qMSP) analysis showed methylation of β-catenin promoter region in five NSCLC cell lines, with increased β-catenin protein levels upon 5′-Aza-2′-deoxycytidine (5-aza-dC) treatment. The methylation status in SPC (methylated) and A549 (unmethylated) was confirmed by bisulfite sequencing PCR. 5-Aza-dC treatment inhibited invasiveness of SPC but not A549. Immunofluorescence analysis showed membranous β-catenin expression was lost in SPC and could be re-established by 5-aza-dC, while Wnt3a treatment led to nuclear translocation of β-catenin in both SPC and A549. Dual-luciferase assays indicated that 5-aza-dC treatment caused no significant increase in Wnt signaling activity compared with Wnt3a treatment. The effect of demethylation agent in SPC can be reversed by β-catenin depletion but not E-cadherin depletion which indicated that the methylation mediated β-catenin silencing might enhance NSCLC invasion and metastasis in an E-cadherin independent manner. Subsequent immunohistochemistry results further confirmed that β-catenin promoter hypermethylation correlated with loss of immunoreactive protein expression, positive lymph node metastasis, high TNM stage and poor prognosis. The present study implicates β-catenin promoter hypermethylation in the mechanism of epigenetic changes underlying NSCLC metastasis and progression, thus indicating the potential of β-catenin as a novel epigenetic target for the treatment of NSCLC patients.  相似文献   

5.
6.
7.
Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM) and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.  相似文献   

8.
A 15-year-old boy ingested a mouthful of paraquat and developed severe respiratory distress. Treatment included the transplantation of one lung, but subsequently changes developed in the graft which are thought to have been due to paraquat, and the patient died two weeks after the operationThe dangers of keeping poisonous substances in incorrectly labelled bottles has once again been demonstrated, while the pattern of paraquat poisoning, especially the development of proliferative alveolitis and terminal bronchiolitis, is confirmed.Immediate forced diuresis followed by haemodialysis is necessary to remove paraquat, thereby perhaps avoiding initiation of the changes in the lungs. The technical feasibility of human lung transplantation has again been demonstrated. It has also been shown that infection does not necessarily pose an insuperable problem, at any rate if, as in the case described, there was no preoperative pulmonary infection in either recipient or donor.  相似文献   

9.
10.

Background

Factors determining the onset and severity of chronic obstructive pulmonary disease remain poorly understood. Previous studies demonstrated that airway surface dehydration in βENaC-overexpressing (βENaC-Tg) mice on a mixed genetic background caused either neonatal mortality or chronic obstructive lung disease suggesting that the onset of lung disease was modulated by the genetic background.

Methods

To test this hypothesis, we backcrossed βENaC-Tg mice onto two inbred strains (C57BL/6 and BALB/c) and studied effects of the genetic background on neonatal mortality, airway ion transport and airway morphology. Further, we crossed βENaC-Tg mice with CFTR-deficient mice to validate the role of CFTR in early lung disease.

Results

We demonstrate that the C57BL/6 background conferred increased CFTR-mediated Cl secretion, which was associated with decreased mucus plugging and mortality in neonatal βENaC-Tg C57BL/6 compared to βENaC-Tg BALB/c mice. Conversely, genetic deletion of CFTR increased early mucus obstruction and mortality in βENaC-Tg mice.

Conclusions

We conclude that a decrease or absence of CFTR function in airway epithelia aggravates the severity of early airway mucus obstruction and related mortality in βENaC-Tg mice. These results suggest that genetic or environmental factors that reduce CFTR activity may contribute to the onset and severity of chronic obstructive pulmonary disease and that CFTR may serve as a novel therapeutic target.  相似文献   

11.
Abstract

(±)125 I-cyanopindolol (±) I CYP) was used to characterize β-adrenoceptors on rat lung and cerebral cortex membranes. The affinity of (±) ICYP was higher for lung (Kd = 64.3 pM) at 37°C. The association reaction of (±) ICYP was faster with lung (k+1 = 1.52 × 109 M?1.min?1) than with cerebral cortex β-adrenoceptors (k+1 = 1.75 × 108 M?1.min?1). In both tissues, the dissociation reaction followed a biphasic process with a fast (t ½ = 15.4 min and 5.6 min for lung and cerebral cortex respectively) and a slow component (t ½ = 474 min and 255 min for lung and cerebral cortex respectively). The thermodynamic parameters for (±) ICYP - β-adrenoceptors binding have been determined from kinetics and equilibrium studies, for the two tissues, at several temperatures between 0° and 44° C. For lung and cerebral cortex, Arrhenius plots were linear with different energies of activation. Van't Hoff plot was not linear for lung and the standard enthalpy and entropy changes of (±) ICYP - β-adrenoceptors interaction decreased linearly with temperature : the binding occured with a negative heat capacity change (ΔCp° = -368.9 cal. moles?1. K?1) at 25° C. Thermodynamic and kinetic results show that binding of (±) ICYP to lung β-adrenoceptors could involve two successive equilibria with a conformational change of the β-adrenergic receptor.  相似文献   

12.
The influence of diabetes on susceptibility to influenza virus infection was examined in a mouse model in which RIP-Kb transgenic mice and their nontransgenic littermates were used as the diabetic and nondiabetic hosts, respectively. Influenza virus A/Phil/82 (H3N2) grew to significantly higher titers in the lungs of diabetic than nondiabetic mice. The extent of viral replication in the lungs was proportional to blood glucose levels in the mice at the time of infection, and the enhanced susceptibility of diabetic mice was reversed with insulin. Growth of A/HKx31 (H3N2) virus was also enhanced in diabetic mice, whereas the highly virulent strain A/PR/8/34 (H1N1) showed no difference in virus yields in diabetic and nondiabetic mice, even with low inocula. A/Phil/82 and A/HKx31 are sensitive to neutralization in vitro by the pulmonary collectin surfactant protein D (SP-D), whereas A/PR/8/34 is essentially resistant. Glucose is a ligand for SP-D, and neutralization of A/Phil/82 virus by SP-D was abolished in the presence of glucose at levels commonly found in diabetic mice. These findings suggest that in mice, and perhaps in humans, diabetes predisposes to influenza virus infection through compromise of collectin-mediated host defense of the lung by glucose.  相似文献   

13.

Background

Leucine zipper/EF hand-containing transmembrane-1 (LETM1) encodes for the human homologue of yeast Mdm38p, which is a mitochondria-shaping protein of unclear function. However, a previous study demonstrated that LETM1 served as an anchor protein for complex formation between mitochondria and ribosome, and regulated mitochondrial biogenesis.

Methodology/Principal Findings

Therefore, we examine the possibility that LETM1 may function to regulate mitochondria and lung tumor growth. In this study, we addressed this question by studying in the effect of adenovirus-mediated LETM1 in the lung cancer cell and lung cancer model mice. To investigate the effects of adenovirus-LETM1 in vitro, we infected with adenovirus-LETM1 in A549 cells. Additionally, in vivo effects of LETM1 were evaluated on K-ras LA1 mice, human non-small cell lung cancer model mice, by delivering the LETM1 via aerosol through nose-only inhalation system. The effects of LETM1 on lung cancer growth and AMPK related signals were evaluated. Adenovirus-mediated overexpression of LETM1 could induce destruction of mitochondria of lung cancer cells through depleting ATP and AMPK activation. Furthermore, adenoviral-LETM1 also altered Akt signaling and inhibited the cell cycle while facilitating apoptosis. Theses results demonstrated that adenovirus-LETM1 suppressed lung cancer cell growth in vitro and in vivo.

Conclusions/Significance

Adenovirus-mediated LETM1 may provide a useful target for designing lung tumor prevention and treatment.  相似文献   

14.
15.
Allergic asthma is characterized by airway eosinophilia, increased mucin production and allergen-specific IgE. Fc gamma receptor IIb (FcγRIIb), an inhibitory IgG receptor, has recently emerged as a negative regulator of allergic diseases like anaphylaxis and allergic rhinitis. However, no studies to date have evaluated its role in allergic asthma. Our main objective was to study the role of FcγRIIb in allergic lung inflammation. We used a murine model of allergic airway inflammation. Inflammation was quantified by BAL inflammatory cells and airway mucin production. FcγRIIb expression was measured by qPCR and flow cytometry and the cytokines were quantified by ELISA. Compared to wild type animals, FcγRIIb deficient mice mount a vigorous allergic lung inflammation characterized by increased bronchoalveolar lavage fluid cellularity, eosinophilia and mucin content upon ragweed extract (RWE) challenge. RWE challenge in sensitized mice upregulated FcγRIIb in the lungs. Disruption of IFN-γ gene abrogated this upregulation. Treatment of naïve mice with the Th1-inducing agent CpG DNA increased FcγRIIb expression in the lungs. Furthermore, treatment of sensitized mice with CpG DNA prior to RWE challenge induced greater upregulation of FcγRIIb than RWE challenge alone. These observations indicated that RWE challenge upregulated FcγRIIb in the lungs by IFN-γ- and Th1-dependent mechanisms. RWE challenge upregulated FcγRIIb on pulmonary CD14+/MHC II+ mononuclear cells and CD11c+ cells. FcγRIIb deficient mice also exhibited an exaggerated RWE-specific IgE response upon sensitization when compared to wild type mice. We propose that FcγRIIb physiologically regulates allergic airway inflammation by two mechanisms: 1) allergen challenge mediates upregulation of FcγRIIb on pulmonary CD14+/MHC II+ mononuclear cells and CD11c+ cells by an IFN-γ dependent mechanism; and 2) by attenuating the allergen specific IgE response during sensitization. Thus, stimulating FcγRIIb may be a therapeutic strategy in allergic airway disorders.  相似文献   

16.

Background

Evidences suggest that β3 -adrenoceptor (β3-AR) plays an important role in heart failure (HF), although no data is reported indicating how these effects may change with the increasing age. Pulmonary congestion and edema are the major life-threatening complications associated with HF. The purpose of this study is to explore the relationship between the anti-β3-AR autoantibody and the expression of β3-AR in the lungs and heart for both aged patients and rats with HF.

Methods

Synthetic β3-AR peptides served as the target antigens in ELISA were used to screen the anti-β3-AR autoantibody in aged patients and rats. Two aged rat models were constructed based on aortic banding and sham-operation. The expression of β3-AR mRNA and protein in the lung and heart was measured in intervention and non-intervention groups by Western blot analysis at the baseline, 5th, 7th, 9th and 11th week, respectively.

Results

The frequency and titer of anti-β3-AR autoantibody in aged patients and rats with HF were higher than those in the control group (p<0.05). The expression of β3-AR mRNA and protein in pulmonary tissues decreased continually from the 7th week (p<0.05), followed by HF observed during the 9th week. The expression of β3-AR in myocardial tissues continued to increase after the 9th week (p<0.05), and the expression of both β3-AR mRNA and protein in the BRL group [HF group with BRL37344 (4-[-[2-hydroxy-(3-chlorophenyl)ethyl-amino] phenoxyacetic acid) (a β3-AR agonist) injection] was positively correlated with BRL37344 when compared with non-BRL group (HF group without BRL37344 injection) (p<0.05).

Conclusion

Anti-β3-AR autoantibody was detected in aged patients and rats with HF. The expression of β3-AR mRNA and protein in pulmonary tissues decreased continually, and began earlier than in the heart, but its expression in myocardial tissues increased continually and could be further promoted by β3-AR agonist.  相似文献   

17.
18.

Background

Radon and arsenic are established pulmonary carcinogens. We investigated the association of cumulative exposure to these carcinogens with NOTCH1, HIF1A and other cancer-specific proteins in lung tissue from uranium miners.

Methodology/Principal Findings

Paraffin-embedded tissue of 147 miners was randomly selected from an autopsy repository by type of lung tissue, comprising adenocarcinoma (AdCa), squamous cell carcinoma (SqCC), small cell lung cancer (SCLC), and cancer-free tissue. Within each stratum, we additionally stratified by low or high level of exposure to radon or arsenic. Lifetime exposure to radon and arsenic was estimated using a quantitative job-exposure matrix developed for uranium mining. For 22 cancer-related proteins, immunohistochemical scores were calculated from the intensity and percentage of stained cells. We explored the associations of these scores with cumulative exposure to radon and arsenic with Spearman rank correlation coefficients (rs). Occupational exposure was associated with an up-regulation of NOTCH1 (radon rs = 0.18, 95% CI 0.02–0.33; arsenic: rs = 0.23, 95% CI 0.07–0.38). Moreover, we investigated whether these cancer-related proteins can classify lung cancer using supervised and unsupervised classification. MUC1 classified lung cancer from cancer-free tissue with a failure rate of 2.1%. A two-protein signature discriminated SCLC (HIF1A low), AdCa (NKX2-1 high), and SqCC (NKX2-1 low) with a failure rate of 8.4%.

Conclusions/Significance

These results suggest that the radiation-sensitive protein NOTCH1 can be up-regulated in lung tissue from uranium miners by level of exposure to pulmonary carcinogens. We evaluated a three-protein signature consisting of a physiological protein (MUC1), a cancer-specific protein (HIF1A), and a lineage-specific protein (NKX2-1) that could discriminate lung cancer and its major subtypes with a low failure rate.  相似文献   

19.
In chronic obstructive pulmonary disease (COPD/emphysema) we have shown a reduced ability of lung and alveolar (AM) macrophages to phagocytose apoptotic cells (defective ‘efferocytosis’), associated with evidence of secondary cellular necrosis and a resultant inflammatory response in the airway. It is unknown whether this defect is present in cancer (no COPD) and if so, whether this results from soluble mediators produced by cancer cells.We investigated efferocytosis in AM (26 controls, 15 healthy smokers, 37 COPD, 20 COPD+ non small cell lung cancer (NSCLC) and 8 patients with NSCLC without COPD) and tumor and tumor-free lung tissue macrophages (21 NSCLC with/13 without COPD). To investigate the effects of soluble mediators produced by lung cancer cells we then treated AM or U937 macrophages with cancer cell line supernatant and assessed their efferocytosis ability. We qualitatively identified Arachidonic Acid (AA) metabolites in cancer cells by LC-ESI-MSMS, and assessed the effects of COX inhibition (using indomethacin) on efferocytosis.Decreased efferocytosis was noted in all cancer/COPD groups in all compartments. Conditioned media from cancer cell cultures decreased the efferocytosis ability of both AM and U937 macrophages with the most pronounced effects occurring with supernatant from SCLC (an aggressive lung cancer type). AA metabolites identified in cancer cells included PGE2. The inhibitory effect of PGE2 on efferocytosis, and the involvement of the COX-2 pathway were shown.Efferocytosis is decreased in COPD/emphysema and lung cancer; the latter at least partially a result of inhibition by soluble mediators produced by cancer cells that include PGE2.  相似文献   

20.
Abstract

After intratracheal administration of “empty” lecithin-cholesterol liposomes to rats it was found out twofold enhancement of the surfactant content with maximum on the 2nd-3rd day and with normalization to the control level by the 7th day. Phagocytic index of the alveolar macrophages was also increased. It was shown the change of the blast-transformation reaction of bronchoalveolar lavage and blood lymphocytes. Immune complexes content in bronchoalveolar lavage at different period of time after liposomes administration increased 1.5-2-fold. The natural killers (NK) activity of cells obtained from bronhoalveolar lavage and blood was enhanced 10 times and 2 times respectively. It is supposed that enhancement of lung surfactant phospholipid content is caused by substrate stimulation of type II alveolocytes activity. The stimulation of immunocompetent cells might be connected with imitation of bacterial attack by liposomes with proteins adsorbed on their surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号