首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed morphometric analysis of a Lucifer yellow-filled Cb amacrine cell was undertaken to provide raw data for the construction of a neuronal cable model. The cable model was employed to determine whether distal input-output regions of dendrites were electrically isolated from the soma and each other. Calculations of steady state electrotonic current spread suggested reasonable electrical communication between cell body and dendrites. In particular, the centripetal voltage attenuation revealed that a synaptic signal introduced at the distal end of the equivalent dendrite could spread passively along the dendrite and reach the soma with little loss in amplitude. A functional interpretation of this results could favour a postsynaptic rather than a presynaptic scheme for the operation of directional selectivity in the rabbit retina. On the other hand, dendrites of starburst amacrine cells process information electrotonically with a bias towards the centrifugal direction and for a restricted range of membrane resistance values the voltage attenuation in the centripetal direction suggests that the action of these dendrites can be confined locally. A functional interpretation of this result favours a presynaptic version of Vaney's cotransmission model which attempts to explain how the neural network of starburst amacrine cells might account for directionally selective responses observed in the rabbit retina.  相似文献   

2.
The estimation of motion direction from time varying retinal images is a fundamental task of visual systems. Neurons that selectively respond to directional visual motion are found in almost all species. In many of them already in the retina direction selective neurons signal their preferred direction of movement. Scientific evidences suggest that direction selectivity is carried from the retina to higher brain areas. Here we adopt a simple integrate-and-fire neuron model, inspired by recent work of Casti et al. (2008), to investigate how directional selectivity changes in cells postsynaptic to directional selective retinal ganglion cells (DSRGC). Our model analysis shows that directional selectivity in the postsynaptic cells increases over a wide parameter range. The degree of directional selectivity positively correlates with the probability of burst-like firing of presynaptic DSRGCs. Postsynaptic potentials summation and spike threshold act together as a temporal filter upon the input spike train. Prior to the intricacy of neural circuitry between retina and higher brain areas, we suggest that sharpening is a straightforward result of the intrinsic spiking pattern of the DSRGCs combined with the summation of excitatory postsynaptic potentials and the spike threshold in postsynaptic neurons.  相似文献   

3.
Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP) was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1–2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.  相似文献   

4.
The present study compares the structure and function of retinal ganglion and amacrine cell dendrites. Although a superficial similarity exists between amacrine and ganglion cell dendrites, a comparison between the branching pattern of the two cell types reveals differences which can only be appreciated at the microscopic level. Whereas decremental branching is found in ganglion cells, a form of non-decremental or "trunk branching" is observed in amacrine cell dendrites. Physiological differences are also observed in amacrine vs ganglion cells in which many amacrine cells generate dendritic impulses which can be readily distinguished from those of the soma, while separate dendritic impulses in ganglion cell dendrites have not been reported. Despite these differences, both amacrine and ganglion cell dendrites appear to contain voltage-gated ion channels, including TTX-sensitive sodium channels. One way to account for separate dendritic impulses in amacrine cells is to have a higher density of sodium channels and we generally find in modeling studies that a dendritic sodium channel density that is more than about 50% of that in the soma is required for excitatory, synaptic currents to give rise to local dendritic spike activity. Under these conditions, impulses can be generated in the dendrites and propagate for some distance along the dendritic tree. When the soma generates impulse activity in amacrine cells, it can activate, antidromically, the entire dendritic tree. Although ganglion cell dendrites do not appear to generate independent impulses, the presence of voltage-gated ion channels in these structures appears to be important for their function. Modeling studies demonstrate that when dendrites lack voltage-gated ion channels, impulse activity evoked by current applied to the cell body is generated at rates that are much higher than those observed physiologically. However, by placing ion channels in the dendrites at a reduced density compared to those of amacrine cells, the firing rate of ganglion cells becomes more physiological and the relationship between frequency and current (F/I relationship) can be precisely matched with physiological data. Recent studies have demonstrated the presence of T-type calcium channels in ganglion cells and our analysis suggests that they are found in higher density in the dendrites compared to the soma. This is the first voltage-gated ion channel which appears more localized to the dendrites than other cell copartments and this difference alone cries for an interpretation. The presence of a significant T-type calcium channel density in the dendrites can influence their integrative properties in several important ways. First, excitatory synaptic currents can be augmented by the activation of T-type calcium channels, although this is more likely to occur for transient rather than sustained synaptic currents because T-type currents show strong inactivation properties. In addition, T-type calcium channels may serve to limit the electrical load which dendrites impose on the spike initiation process and thus enhance the speed with which impulses can be triggered by the impulse generation site. This role whill enhance the safety factor for impulses traveling in the orthograde direction.  相似文献   

5.
Greenberg KP  Pham A  Werblin FS 《Neuron》2011,69(4):713-720
Retinal degenerative diseases cause photoreceptor loss and often result in remodeling and deafferentation of the inner retina. Fortunately, ganglion cell morphology appears to remain intact long after photoreceptors and distal retinal circuitry have degenerated. We have introduced the optical neuromodulators channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR) differentially into the soma and dendrites of ganglion cells to recreate antagonistic center-surround receptive field interactions. We then reestablished the physiological receptive field dimensions of primate parafoveal ganglion cells by convolving Gaussian-blurred versions of the visual scene at the appropriate wavelength for each neuromodulator with the Gaussians inherent in the soma and dendrites. These Gaussian-modified ganglion cells responded with physiologically relevant antagonistic receptive field components and encoded edges with parafoveal resolution. This approach bypasses the degenerated areas of the distal retina and could provide a first step in restoring sight to individuals suffering from retinal disease.  相似文献   

6.
The directional selectivity of retinal ganglion cell responses represents a primitive pattern recognition that operates within a retinal neural circuit. The cellular origin and mechanism of directional selectivity were investigated by selectively eliminating retinal starburst amacrine cells, using immunotoxin-mediated cell targeting techniques. Starburst cell ablation in the adult retina abolished not only directional selectivity of ganglion cell responses but also an optokinetic eye reflex derived by stimulus movement. Starburst cells therefore serve as the key element that discriminates the direction of stimulus movement through integrative synaptic transmission and play a pivotal role in information processing that stabilizes image motion.  相似文献   

7.
The neuronal circuitry underlying the generation of direction selectivity in the retina has remained elusive for almost 40 years. Recent studies indicate that direction selectivity may be established within the radial dendrites of 'starburst' amacrine cells and that retinal ganglion cells may acquire their direction selectivity by the appropriate weighting of excitatory and inhibitory inputs from starburst dendrites pointing in different directions. If so, this would require unexpected complexity and subtlety in the synaptic connectivity of these CNS neurons.  相似文献   

8.
Cellular mechanisms for direction selectivity in the retina   总被引:2,自引:0,他引:2  
Demb JB 《Neuron》2007,55(2):179-186
Direction selectivity represents a fundamental computation found across multiple sensory systems. In the mammalian visual system, direction selectivity appears first in the retina, where excitatory and inhibitory interneurons release neurotransmitter most rapidly during movement in a preferred direction. Two parallel sets of interneuron signals are integrated by a direction-selective ganglion cell, which creates a direction preference for both bright and dark moving objects. Direction selectivity of synaptic input becomes amplified by action potentials in the ganglion cell dendrites. Recent work has elucidated direction-selective mechanisms in inhibitory circuitry, but mechanisms in excitatory circuitry remain unexplained.  相似文献   

9.
The biophysical mechanisms that give rise to direction selectivity in the retina remain uncertain. Current evidence suggests that the directional signal first arises within the dendrites of starburst amacrine cells (SBACs). Two models have been proposed to explain this phenomenon, one based on mutual inhibitory interactions between SBACs, and the other positing an intrinsic dendritic mechanism requiring a voltage-gradient depolarizing towards the dendritic tips. We tested these models by recording current and voltage responses to visual stimuli in SBACs. In agreement with previous work, we found that the excitatory currents in the SBACs were directional, and remained directional when GABA receptors were blocked. Contrary to the mutual-inhibitory model, stimuli that produce strong directional signals in ganglion cells failed to reveal a significant inhibitory input to SBACs. Suppression of the tonic excitatory conductance, proposed to generate the dendritic voltage-gradient required for the dendrite autonomous model, failed to eliminate the directional signal in SBACs. However, selective block of tetrodotoxin-resistant sodium channels did reduce the strength of the directional excitatory signal in the SBACs. These results indicate that current models of direction-selectivity in the SBACs are inadequate, and suggest that voltage-gated excitatory channels, specifically tetrodotoxin-resistant sodium channels, are important elements in directional signaling. This is the first physiological evidence that tetrodotoxin-resistant sodium channels play a role in retinal information processing.  相似文献   

10.
11.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are cation-selective channels present in retina, brain and heart. The activity of HCN channels contributes to signal integration, cell excitability and pacemaker activity. HCN1 channels expressed in photoreceptors participate in keeping light responses transient and are required for normal mesopic vision. The subcellular localization of HCN1 varies among cell types. In photoreceptors HCN1 is concentrated in the inner segments while in other retinal neurons, HCN1 is evenly distributed though the cell. This is in contrast to hippocampal neurons where HCN1 is concentrated in a subset of dendrites. A key regulator of HCN1 trafficking and activity is tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b). Multiple splice isoforms of TRIP8b are expressed throughout the brain and can differentially regulate the surface expression and activity of HCN1. The purpose of the present study was to determine which isoforms of TRIP8b are expressed in the retina and to test if loss of TRIP8b alters HCN1 expression or trafficking. We found that TRIP8b colocalizes with HCN1 in multiple retina neurons and all major splice isoforms of TRIP8b are expressed in the retina. Photoreceptors express three different isoforms. In TRIP8b knockout mice, the ability of HCN1 to traffic to the surface of retinal neurons is unaffected. However, there is a large decrease in the total amount of HCN1. We conclude that TRIP8b in the retina is needed to achieve maximal expression of HCN1.  相似文献   

12.
In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL) show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs) and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.  相似文献   

13.
Retinal direction-selectivity originates in starburst amacrine cells (SACs), which display a centrifugal preference, responding with greater depolarization to a stimulus expanding from soma to dendrites than to a collapsing stimulus. Various mechanisms were hypothesized to underlie SAC centrifugal preference, but dissociating them is experimentally challenging and the mechanisms remain debatable. To address this issue, we developed the Retinal Stimulation Modeling Environment (RSME), a multifaceted data-driven retinal model that encompasses detailed neuronal morphology and biophysical properties, retina-tailored connectivity scheme and visual input. Using a genetic algorithm, we demonstrated that spatiotemporally diverse excitatory inputs–sustained in the proximal and transient in the distal processes–are sufficient to generate experimentally validated centrifugal preference in a single SAC. Reversing these input kinetics did not produce any centrifugal-preferring SAC. We then explored the contribution of SAC-SAC inhibitory connections in establishing the centrifugal preference. SAC inhibitory network enhanced the centrifugal preference, but failed to generate it in its absence. Embedding a direction selective ganglion cell (DSGC) in a SAC network showed that the known SAC-DSGC asymmetric connectivity by itself produces direction selectivity. Still, this selectivity is sharpened in a centrifugal-preferring SAC network. Finally, we use RSME to demonstrate the contribution of SAC-SAC inhibitory connections in mediating direction selectivity and recapitulate recent experimental findings. Thus, using RSME, we obtained a mechanistic understanding of SACs’ centrifugal preference and its contribution to direction selectivity.  相似文献   

14.
Recent studies have shown that the dendrites of several neurons are not simple translators but are crucial facilitators of excitatory postsynaptic potential (EPSP) propagation and summation of synaptic inputs to compensate for inherent voltage attenuation. Granule cells (GCs)are located at the gateway for valuable information arriving at the hippocampus from the entorhinal cortex. However, the underlying mechanisms of information integration along the dendrites of GCs in the hippocampus are still unclear. In this study, we investigated the input integration around dendritic branches of GCs in the rat hippocampus. We applied differential spatiotemporal stimulations to the dendrites using a high-speed glutamate-uncaging laser. Our results showed that when two sites close to and equidistant from a branching point were simultaneously stimulated, a nonlinear summation of EPSPs was observed at the soma. In addition, nonlinear summation (facilitation) depended on the stimulus location and was significantly blocked by the application of a voltage-dependent Ca2+ channel antagonist. These findings suggest that the nonlinear summation of EPSPs around the dendritic branches of hippocampal GCs is a result of voltage-dependent Ca2+ channel activation and may play a crucial role in the integration of input information.  相似文献   

15.
Tian N  Copenhagen DR 《Neuron》2003,39(1):85-96
ON and OFF pathways separately relay increment and decrement luminance signals from retinal bipolar cells to cortex. ON-OFF retinal ganglion cells (RGCs) are activated via synaptic inputs onto bistratified dendrites localized in the ON and OFF regions of the inner plexiform layer. Postnatal maturational processes convert bistratifying ON-OFF RGCs to monostratifying ON and OFF RGCs. Although visual deprivation influences refinement of higher visual centers, no previous studies suggest that light regulates either the development of the visual-evoked signaling in retinal ON and OFF pathways, nor pruning of bistratified RGC dendrites. We find that dark rearing blocks both the maturational loss of ON-OFF responsive RGCs and the pruning of dendrites. Thus, in retina, there is a previously unrecognized, pathway-specific maturation that is profoundly affected by visual deprivation.  相似文献   

16.
This study investigates the role of two different HCN channel isoforms in the light response of the outer retina. Taking advantage of HCN-deficient mice models and of in vitro (patch-clamp) and in vivo (ERG) recordings of retinal activity we show that HCN1 and HCN2 channels are expressed at distinct retinal sites and serve different functions. Specifically, HCN1 operate mainly at the level of the photoreceptor inner segment from where, together with other voltage sensitive channels, they control the time course of the response to bright light. Conversely, HCN2 channels are mainly expressed on the dendrites of bipolar cells and affect the response to dim lights. Single cell recordings in HCN1−/− mice or during a pharmacological blockade of Ih show that, contrary to previous reports, Ikx alone is able to generate the fast initial transient in the rod bright flash response. Here we demonstrate that the relative contribution of Ih and Ikx to the rods'' temporal tuning depends on the membrane potential. This is the first instance in which the light response of normal and HCN1- or HCN2-deficient mice is analyzed in single cells in retinal slice preparations and in integrated full field ERG responses from intact animals. This comparison reveals a high degree of correlation between single cell current clamp data and ERG measurements. A novel picture emerges showing that the temporal profile of the visual response to dim and bright luminance changes is separately determined by the coordinated gating of distinct voltage dependent conductances in photoreceptors and bipolar cells.  相似文献   

17.
Recent imaging studies have reported directional motion biases in human visual cortex when perceiving moving random dot patterns. It has been hypothesized that these biases occur as a result of the integration of motion detector activation along the path of motion in visual cortex. In this study we investigate the nature of such motion integration with functional MRI (fMRI) using different motion stimuli. Three types of moving random dot stimuli were presented, showing either coherent motion, motion with spatial decorrelations or motion with temporal decorrelations. The results from the coherent motion stimulus reproduced the centripetal and centrifugal directional motion biases in V1, V2 and V3 as previously reported. The temporally decorrelated motion stimulus resulted in both centripetal and centrifugal biases similar to coherent motion. In contrast, the spatially decorrelated motion stimulus resulted in small directional motion biases that were only present in parts of visual cortex coding for higher eccentricities of the visual field. In combination with previous results, these findings indicate that biased motion responses in early visual cortical areas most likely depend on the spatial integration of a simultaneously activated motion detector chain.  相似文献   

18.
A new mammalian photoreceptor was recently discovered to reside in the ganglion cell layer of the inner retina.These intrinsically photosensitive retinal ganglion cells(ipRGCs) express a photopigment,melanopsin,that confers upon them the ability to respond to light in the absence of all rod and cone photoreceptor input.Although relatively few in number,ipRGCs extend their dendrites across large expanses of the retina making them ideally suited to function as irradiance detectors to assess changes in ambient...  相似文献   

19.
The daggertooth Anotopterus pharao (Aulopiformes: Anotopteridae) is a large, piscivorous predator that lives within the epipelagic zone at night. In this species, the distribution of retinal ganglion cells has been examined. An isodensity contour map of ganglion cells shows that the cells concentrate in a slightly ventral region of the temporal retina. The region of high ganglion cell density contains 4.07 x 10(3) cells mm(-2), and the resulting visual acuity is 3.5 cycles deg(-1). Outside the area centralis, conspicuously large ganglion cells (LGCs) are observed in the temporal margin of the retina. The LGCs are regularly arrayed, and displaced into the inner plexiform layer. Thick dendrites extend into the outer part (sublamina a) of the inner plexiform layer. In the retinal whole mount, the total number of LGCs is 1590 (90.7 cm specimen), and the mean size of the LGCs is about four times larger than that of the ordinary ganglion cells. The morphological appearance of the LGCs was similar to the off-type alpha cells of the cat retina. The function of these distinctive LGCs is discussed in relation to specific head-up feeding behaviour.  相似文献   

20.
In the retina, presynaptic inhibitory mechanisms that shape directionally selective (DS) responses in output ganglion cells are well established. However, the nature of inhibition-independent forms of directional selectivity remains poorly defined. Here, we describe a genetically specified set of ON-OFF DS ganglion cells (DSGCs) that code anterior motion. This entire population of DSGCs exhibits asymmetric dendritic arborizations that orientate toward the preferred direction. We demonstrate that morphological asymmetries along with nonlinear dendritic conductances generate a centrifugal (soma-to-dendrite) preference that does not critically depend upon, but works in parallel with the GABAergic circuitry. We also show that in symmetrical DSGCs, such dendritic DS mechanisms are aligned with, or are in opposition to, the inhibitory DS circuitry in distinct dendritic subfields where they differentially interact to promote or weaken directional preferences. Thus, pre- and postsynaptic DS mechanisms interact uniquely in distinct ganglion cell populations, enabling efficient DS coding under diverse conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号