首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-chain polyunsaturated fatty acids (PUFA) orchestrate immunity and inflammation through their capacity to be converted to potent inflammatory mediators. We assessed associations of FADS gene cluster polymorphisms and fasting serum PUFA concentrations in a fully ascertained, geographically isolated founder population of European descent. Concentrations of 22 PUFAs were determined by gas chromatography, of which ten fatty acids and five ratios defining FADS1 and FADS2 activity were tested for genetic association against 16 single nucleotide polymorphisms (SNP) in 224 individuals. A cluster of SNPs in tight linkage disequilibrium in the FADS1 gene (rs174537, rs174545, rs174546, rs174553, rs174556, rs174561, rs174568, and rs99780) were strongly associated with arachidonic acid (AA) (P = 5.8 × 10−7 – 1.7 × 10−8) among other PUFAs, but the strongest associations were with the ratio measuring FADS1 activity in the ω-6 series (P = 2.11 × 10−13 – 1.8 × 10−20). The minor allele across all SNPs was consistently associated with decreased ω-6 PUFAs, with the exception of dihomo-γ-linoleic acid (DHGLA), where the minor allele was consistently associated with increased levels. Our findings in a geographically isolated population with a homogenous dietary environment suggest that variants in the Δ-5 desaturase enzymatic step likely regulate the efficiency of conversion of medium-chain PUFAs to potentially inflammatory PUFAs, such as AA.  相似文献   

2.
Genetic variability in the FADS1-FADS2 gene cluster [encoding delta-5 (D5D) and delta-6 (D6D) desaturases] has been associated with plasma long-chain PUFA (LCPUFA) and lipid levels in adults. To better understand these relationships, we further characterized the association between FADS1-FADS2 genetic variability and D5D and D6D activities in adolescents. Thirteen single nucleotide polymorphisms (SNPs) were genotyped in 1,144 European adolescents (mean ± SD age: 14.7 ± 1.4 y). Serum phospholipid fatty acid levels were analyzed using gas chromatography. D5D and D6D activities were estimated from the C20:4n-6/C20:3n-6 and C20:3n-6/C18:2n-6 ratios, respectively. Minor alleles of nine SNPs were associated with higher 18:2n-6 levels (1.9E-18 ≤ P ≤ 6.1E-5), lower C20:4n-6 levels (7.1E-69 ≤ P ≤ 1.2E-12), and lower D5D activity (7.2E-44 ≤ P ≤ 4.4E-5). All haplotypes carrying the rs174546 minor allele were associated with lower D5D activity, suggesting that this SNP is in linkage disequilibrium with a functional SNP within FADS1. In contrast, only the rs968567 minor allele was associated with higher D6D activity (P = 1.5E-6). This finding agrees with an earlier in vitro study showing that the minor allele of rs968567 is associated with a higher FADS2 promoter activity. These results suggest that rare alleles of several SNPs in the FADS gene cluster are associated with higher D6D activity and lower D5D activity in European adolescents.  相似文献   

3.
Polyunsaturated fatty acids (PUFA) have a role in many physiological processes, including energy production, modulation of inflammation, and maintenance of cell membrane integrity. High plasma PUFA concentrations have been shown to have beneficial effects on cardiovascular disease and mortality. To identify genetic contributors of plasma PUFA concentrations, we conducted a genome-wide association study of plasma levels of six omega-3 and omega-6 fatty acids in 1,075 participants in the InCHIANTI study on aging. The strongest evidence for association was observed in a region of chromosome 11 that encodes three fatty acid desaturases (FADS1, FADS2, FADS3). The SNP with the most significant association was rs174537 near FADS1 in the analysis of arachidonic acid (AA; p=5.95×10−46). Minor allele homozygotes had lower AA compared to the major allele homozygotes and rs174537 accounted for 18.6% of the additive variance in AA concentrations. This SNP was also associated with levels of eicosadienoic acid (EDA; p=6.78×10−9) and eicosapentanoic acid (EPA; p=1.07×10−14). Participants carrying the allele associated with higher AA, EDA, and EPA also had higher low-density lipoprotein (LDL-C) and total cholesterol levels. Outside the FADS gene cluster, the strongest region of association mapped to chromosome 6 in the region encoding an elongase of very long fatty acids 2 (ELOVL2). In this region, association was observed with EPA (rs953413; p=1.1×10−6). The effects of rs174537 were confirmed in an independent sample of 1,076 subjects participating in the GOLDN study. The ELOVL2 SNP was associated with docosapentanoic and DHA but not with EPA in GOLDN. These findings show that polymorphisms of genes encoding enzymes in the metabolism of PUFA contribute to plasma concentrations of fatty acids.  相似文献   

4.
Levels of omega-6 (n-6) and omega-3 (n-3), long chain polyunsaturated fatty acids (LcPUFAs) such as arachidonic acid (AA; 20∶4, n-6), eicosapentaenoic acid (EPA; 20∶5, n-3) and docosahexaenoic acid (DHA; 22∶6, n-3) impact a wide range of biological activities, including immune signaling, inflammation, and brain development and function. Two desaturase steps (Δ6, encoded by FADS2 and Δ5, encoded by FADS1) are rate limiting in the conversion of dietary essential 18 carbon PUFAs (18C-PUFAs) such as LA (18∶2, n-6) to AA and α-linolenic acid (ALA, 18∶3, n-3) to EPA and DHA. GWAS and candidate gene studies have consistently identified genetic variants within FADS1 and FADS2 as determinants of desaturase efficiencies and levels of LcPUFAs in circulating, cellular and breast milk lipids. Importantly, these same variants are documented determinants of important cardiovascular disease risk factors (total, LDL, and HDL cholesterol, triglycerides, CRP and proinflammatory eicosanoids). FADS1 and FADS2 lie head-to-head (5′ to 5′) in a cluster configuration on chromosome 11 (11q12.2). There is considerable linkage disequilibrium (LD) in this region, where multiple SNPs display association with LcPUFA levels. For instance, rs174537, located ∼15 kb downstream of FADS1, is associated with both FADS1 desaturase activity and with circulating AA levels (p-value for AA levels = 5.95×10−46) in humans. To determine if DNA methylation variation impacts FADS activities, we performed genome-wide allele-specific methylation (ASM) with rs174537 in 144 human liver samples. This approach identified highly significant ASM with CpG sites between FADS1 and FADS2 in a putative enhancer signature region, leading to the hypothesis that the phenotypic associations of rs174537 are likely due to methylation differences. In support of this hypothesis, methylation levels of the most significant probe were strongly associated with FADS1 and, to a lesser degree, FADS2 activities.  相似文献   

5.
To date, eleven genome-wide significant (GWS) loci (P < 5×10−8) for polycystic ovary syndrome (PCOS) have been identified through genome-wide association studies (GWAS). Some of the risk loci have been selected for replications and validated in multiple ethnicities, however, few previous studies investigated all loci. Scanning all the GWAS variants would demonstrate a more informative profile of variance they explained. Thus, we analyzed all the 17 single nucleotide polymorphisms (SNPs) mapping to the 11 GWAS loci in an independent sample set of 800 Chinese subjects with PCOS and 1110 healthy controls systematically. Variants of rs3802457 in C9orf3 locus (P = 5.99×10−4) and rs13405728 in LHCGR locus (P = 3.73×10−4) were significantly associated with PCOS after the strict Bonferroni correction in our data set. The further haplotype analysis indicated that in the block of C9orf3 gene (rs4385527 and rs3802457), GA haplotype played a protective role in PCOS (8.7 vs 5.0, P = 9.85×10−6, OR = 0.548, 95%CI = 0.418–0.717), while GG haplotype was found suffering from an extraordinarily increased risk of PCOS (73.6% vs79.2%, P = 3.41×10−5, OR = 1.394, 95%CI = 1.191–1.632). Moreover, the directions of effects for all SNPs were consistent with previous GWAS reports (P = 1.53×10−5). Polygenic score analysis demonstrated that these 17 SNPs have a significant capacity on predicting case-control status in our samples (P = 7.17×10−9), meanwhile all these gathered 17 SNPs explained about 2.40% of variance. Our findings supported that C9orf3 and LHCGR loci variants were vital susceptibility of PCOS.  相似文献   

6.
Very long-chain saturated fatty acids (VLSFAs) are saturated fatty acids with 20 or more carbons. In contrast to the more abundant saturated fatty acids, such as palmitic acid, there is growing evidence that circulating VLSFAs may have beneficial biological properties. Whether genetic factors influence circulating levels of VLSFAs is not known. We investigated the association of common genetic variation with plasma phospholipid/erythrocyte levels of three VLSFAs by performing genome-wide association studies in seven population-based cohorts comprising 10,129 subjects of European ancestry. We observed associations of circulating VLSFA concentrations with common variants in two genes, serine palmitoyl-transferase long-chain base subunit 3 (SPTLC3), a gene involved in the rate-limiting step of de novo sphingolipid synthesis, and ceramide synthase 4 (CERS4). The SPTLC3 variant at rs680379 was associated with higher arachidic acid (20:0 , P = 5.81 × 10−13). The CERS4 variant at rs2100944 was associated with higher levels of 20:0 (P = 2.65 × 10−40) and in analyses that adjusted for 20:0, with lower levels of behenic acid (P = 4.22 × 10−26) and lignoceric acid (P = 3.20 × 10−21). These novel associations suggest an inter-relationship of circulating VLSFAs and sphingolipid synthesis.  相似文献   

7.
Genome-wide association studies (GWASs) of follicular lymphoma (FL) have previously identified human leukocyte antigen (HLA) gene variants. To identify additional FL susceptibility loci, we conducted a large-scale two-stage GWAS in 4,523 case subjects and 13,344 control subjects of European ancestry. Five non-HLA loci were associated with FL risk: 11q23.3 (rs4938573, p = 5.79 × 10−20) near CXCR5; 11q24.3 (rs4937362, p = 6.76 × 10−11) near ETS1; 3q28 (rs6444305, p = 1.10 × 10−10) in LPP; 18q21.33 (rs17749561, p = 8.28 × 10−10) near BCL2; and 8q24.21 (rs13254990, p = 1.06 × 10−8) near PVT1. In an analysis of the HLA region, we identified four linked HLA-DRβ1 multiallelic amino acids at positions 11, 13, 28, and 30 that were associated with FL risk (pomnibus = 4.20 × 10−67 to 2.67 × 10−70). Additional independent signals included rs17203612 in HLA class II (odds ratio [ORper-allele] = 1.44; p = 4.59 × 10−16) and rs3130437 in HLA class I (ORper-allele = 1.23; p = 8.23 × 10−9). Our findings further expand the number of loci associated with FL and provide evidence that multiple common variants outside the HLA region make a significant contribution to FL risk.  相似文献   

8.
Protein-truncating variants (PTVs) affecting dyslipidemia risk may point to therapeutic targets for cardiometabolic disease. Our objective was to identify PTVs that were associated with both lipid levels and the risk of coronary artery disease (CAD) or type 2 diabetes (T2D) and assess their possible associations with risks of other diseases. To achieve this aim, we leveraged the enrichment of PTVs in the Finnish population and tested the association of low-frequency PTVs in 1,209 genes with serum lipid levels in the Finrisk Study (n = 23,435). We then tested which of the lipid-associated PTVs were also associated with the risks of T2D or CAD, as well as 2,683 disease endpoints curated in the FinnGen Study (n = 218,792). Two PTVs were associated with both lipid levels and the risk of CAD or T2D: triglyceride-lowering variants in ANGPTL8 (-24.0[-30.4 to -16.9] mg/dL per rs760351239-T allele, P = 3.4 × 10−9) and ANGPTL4 (-14.4[-18.6 to -9.8] mg/dL per rs746226153-G allele, P = 4.3 × 10−9). The risk of T2D was lower in carriers of the ANGPTL4 PTV (OR = 0.70[0.60–0.81], P = 2.2 × 10−6) than noncarriers. The odds of CAD were 47% lower in carriers of a PTV in ANGPTL8 (OR = 0.53[0.37–0.76], P = 4.5 × 10−4) than noncarriers. Finally, the phenome-wide scan of the ANGPTL8 PTV showed that the ANGPTL8 PTV carriers were less likely to use statin therapy (68,782 cases, OR = 0.52[0.40–0.68], P = 1.7 × 10−6) compared to noncarriers. Our findings provide genetic evidence of potential long-term efficacy and safety of therapeutic targeting of dyslipidemias.  相似文献   

9.
Dyslipidemia is a strong risk factor for cardiovascular disease among patients with type 2 diabetes (T2D). The aim of this study was to identify lipid-related genetic variants in T2D patients of Han Chinese ancestry. Among 4,908 Chinese T2D patients who were not taking lipid-lowering medications, single nucleotide polymorphisms (SNPs) in seven genes previously found to be associated with lipid traits in genome-wide association studies conducted in populations of European ancestry (ABCA1, GCKR, BAZ1B, TOMM40, DOCK7, HNF1A, and HNF4A) were genotyped. After adjusting for multiple covariates, SNPs in ABCA1, GCKR, BAZ1B, TOMM40, and HNF1A were identified as significantly associated with triglyceride levels in T2D patients (P < 0.05). The associations between the SNPs in ABCA1 (rs3890182), GCKR (rs780094), and BAZ1B (rs2240466) remained significant even after correction for multiple testing (P = 8.85×10−3, 7.88×10−7, and 2.03×10−6, respectively). BAZ1B (rs2240466) also was associated with the total cholesterol level (P = 4.75×10−2). In addition, SNP rs157580 in TOMM40 was associated with the low-density lipoprotein cholesterol level (P = 6.94×10−3). Our findings confirm that lipid-related genetic loci are associated with lipid profiles in Chinese patients with type 2 diabetes.  相似文献   

10.
Recent genome-wide meta-analyses identified 157 loci associated with cross-sectional lipid traits. Here we tested whether these loci associate (singly and in trait-specific genetic risk scores [GRS]) with longitudinal changes in total cholesterol (TC) and triglyceride (TG) levels in a population-based prospective cohort from Northern Sweden (the GLACIER Study). We sought replication in a southern Swedish cohort (the MDC Study; N = 2,943). GLACIER Study participants (N = 6,064) were genotyped with the MetaboChip array. Up to 3,495 participants had 10-yr follow-up data available in the GLACIER Study. The TC- and TG-specific GRSs were strongly associated with change in lipid levels (β = 0.02 mmol/l per effect allele per decade follow-up, P = 2.0×10−11 for TC; β = 0.02 mmol/l per effect allele per decade follow-up, P = 5.0×10−5 for TG). In individual SNP analysis, one TC locus, apolipoprotein E (APOE) rs4420638 (β = 0.12 mmol/l per effect allele per decade follow-up, P = 2.0×10−5), and two TG loci, tribbles pseudokinase 1 (TRIB1) rs2954029 (β = 0.09 mmol/l per effect allele per decade follow-up, P = 5.1×10−4) and apolipoprotein A-I (APOA1) rs6589564 (β = 0.31 mmol/l per effect allele per decade follow-up, P = 1.4×10−8), remained significantly associated with longitudinal changes for the respective traits after correction for multiple testing. An additional 12 loci were nominally associated with TC or TG changes. In replication analyses, the APOE rs4420638, TRIB1 rs2954029, and APOA1 rs6589564 associations were confirmed (P≤0.001). In summary, trait-specific GRSs are robustly associated with 10-yr changes in lipid levels and three individual SNPs were strongly associated with 10-yr changes in lipid levels.  相似文献   

11.
Immunoglobulin E (IgE) is one of the central players in asthma and allergic diseases. Although the serum IgE level, a useful endophenotype, is generally increased in patients with asthma, genetic factors influencing IgE regulation in asthma are still not fully understood. To identify the genetic variations associated with total serum and mite-specific IgEs in asthmatics, a genome-wide association study (GWAS) of 657,366 single nucleotide polymorphisms (SNPs) was performed in 877 Korean asthmatics. This study found that several new genes might be associated with total IgE in asthmatics, such as CRIM1 (rs848512, P = 1.18×10−6; rs711254, P = 6.73×10−6), ZNF71 (rs10404342, P = 7.60×10−6), TLN1 (rs4879926, P = 7.74×10−6), and SYNPO2 (rs1472066, P = 8.36×10−6; rs1038770, P = 8.66×10−6). Regarding the association of specific IgE to house dust mites, it was observed that intergenic SNPs nearby to OPRK1 and LOC730217 might be associated with Dermatophagoides pteronyssinus (D.p.) and Dermatophagoides farinae (D.f.) in asthmatics, respectively. In further pathway analysis, the phosphatidylinositol signaling system and adherens junction pathways were estimated to play a role in the regulation of total IgE levels in asthma. Although functional evaluations and replications of these results in other populations are needed, this GWAS of serum IgE in asthmatics could facilitate improved understanding of the role of the newly identified genetic variants in asthma and its related phenotypes.  相似文献   

12.
Myopia is the most common vision disorder and the leading cause of visual impairment worldwide. However, gene variants identified to date explain less than 10% of the variance in refractive error, leaving the majority of heritability unexplained (“missing heritability”). Previously, we reported that expression of APLP2 was strongly associated with myopia in a primate model. Here, we found that low-frequency variants near the 5’-end of APLP2 were associated with refractive error in a prospective UK birth cohort (n = 3,819 children; top SNP rs188663068, p = 5.0 × 10−4) and a CREAM consortium panel (n = 45,756 adults; top SNP rs7127037, p = 6.6 × 10−3). These variants showed evidence of differential effect on childhood longitudinal refractive error trajectories depending on time spent reading (gene x time spent reading x age interaction, p = 4.0 × 10−3). Furthermore, Aplp2 knockout mice developed high degrees of hyperopia (+11.5 ± 2.2 D, p < 1.0 × 10−4) compared to both heterozygous (-0.8 ± 2.0 D, p < 1.0 × 10−4) and wild-type (+0.3 ± 2.2 D, p < 1.0 × 10−4) littermates and exhibited a dose-dependent reduction in susceptibility to environmentally induced myopia (F(2, 33) = 191.0, p < 1.0 × 10−4). This phenotype was associated with reduced contrast sensitivity (F(12, 120) = 3.6, p = 1.5 × 10−4) and changes in the electrophysiological properties of retinal amacrine cells, which expressed Aplp2. This work identifies APLP2 as one of the “missing” myopia genes, demonstrating the importance of a low-frequency gene variant in the development of human myopia. It also demonstrates an important role for APLP2 in refractive development in mice and humans, suggesting a high level of evolutionary conservation of the signaling pathways underlying refractive eye development.  相似文献   

13.
We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip array. We also imputed HLA data with a previously validated imputation method to perform a more comprehensive analysis of this genomic region. The strongest association signals were observed in the HLA region, with rs477515 representing the highest peak (p = 4.05 × 10−40, OR = 1.73). A multivariate model including class II amino acids of HLA-DRβ1 and HLA-DQα1 and one class I amino acid of HLA-B explained most of the HLA association with GCA, consistent with previously reported associations of classical HLA alleles like HLA-DRB104. An omnibus test on polymorphic amino acid positions highlighted DRβ1 13 (p = 4.08 × 10−43) and HLA-DQα1 47 (p = 4.02 × 10−46), 56, and 76 (both p = 1.84 × 10−45) as relevant positions for disease susceptibility. Outside the HLA region, the most significant loci included PTPN22 (rs2476601, p = 1.73 × 10−6, OR = 1.38), LRRC32 (rs10160518, p = 4.39 × 10−6, OR = 1.20), and REL (rs115674477, p = 1.10 × 10−5, OR = 1.63). Our study provides evidence of a strong contribution of HLA class I and II molecules to susceptibility to GCA. In the non-HLA region, we confirmed a key role for the functional PTPN22 rs2476601 variant and proposed other putative risk loci for GCA involved in Th1, Th17, and Treg cell function.  相似文献   

14.
Vascular endothelial growth factor A (VEGFA) is among the most-significant stimulators of angiogenesis. Its effect on cardiovascular diseases and on the variation of related risk factors such as lipid parameters is considered important, although as yet unclear. Recently, we identified four common variants (rs6921438, rs4416670, rs6993770, and rs10738760) that explain up to 50% of the heritability of plasma VEGFA levels. In the present study, we aimed at assessing the contribution of these variants to the variation of blood lipid levels (including apoE, triglycerides, total cholesterol, low- and high-density lipoprotein cholesterol levels (LDL-C and HDL-C)] in healthy subjects. The effect of these single-nucleotide polymorphisms (SNPs) on lipid levels was assessed using linear regression in discovery and replication samples (n = 1,006 and n = 1,145; respectively), followed by a meta-analysis. Their gene×gene and gene×environment interactions were also assessed. SNP rs6921438 was associated with HDL-C (β = −0.08 mmol/l, Poverall = 1.2 × 10−7) and LDL-C (β = 0.13 mmol/l, Poverall = 1.5 × 10−4). We also identified a significant association between the interaction rs4416670×hypertension and apoE variation (Poverall = 1.7 × 10−5). Therefore, our present study shows a common genetic regulation between VEGFA and cholesterol homeostasis molecules. The SNP rs6921438 is in linkage disequilibrium with variants located in an enhancer- and promoter-associated histone mark region and could have a regulatory effect in the expression of surrounding genes, including VEGFA.  相似文献   

15.
《PloS one》2013,8(1)
Genetic factors explain a majority of risk variance for age-related macular degeneration (AMD). While genome-wide association studies (GWAS) for late AMD implicate genes in complement, inflammatory and lipid pathways, the genetic architecture of early AMD has been relatively under studied. We conducted a GWAS meta-analysis of early AMD, including 4,089 individuals with prevalent signs of early AMD (soft drusen and/or retinal pigment epithelial changes) and 20,453 individuals without these signs. For various published late AMD risk loci, we also compared effect sizes between early and late AMD using an additional 484 individuals with prevalent late AMD. GWAS meta-analysis confirmed previously reported association of variants at the complement factor H (CFH) (peak P = 1.5×10−31) and age-related maculopathy susceptibility 2 (ARMS2) (P = 4.3×10−24) loci, and suggested Apolipoprotein E (ApoE) polymorphisms (rs2075650; P = 1.1×10−6) associated with early AMD. Other possible loci that did not reach GWAS significance included variants in the zinc finger protein gene GLI3 (rs2049622; P = 8.9×10−6) and upstream of GLI2 (rs6721654; P = 6.5×10−6), encoding retinal Sonic hedgehog signalling regulators, and in the tyrosinase (TYR) gene (rs621313; P = 3.5×10−6), involved in melanin biosynthesis. For a range of published, late AMD risk loci, estimated effect sizes were significantly lower for early than late AMD. This study confirms the involvement of multiple established AMD risk variants in early AMD, but suggests weaker genetic effects on the risk of early AMD relative to late AMD. Several biological processes were suggested to be potentially specific for early AMD, including pathways regulating RPE cell melanin content and signalling pathways potentially involved in retinal regeneration, generating hypotheses for further investigation.  相似文献   

16.
Spondyloarthritis (SpA) is a chronic inflammatory disorder with a strong genetic predisposition dominated by the role of HLA-B27. However, the contribution of other genes to the disease susceptibility has been clearly demonstrated. We previously reported significant evidence of linkage of SpA to chromosome 9q31–34. The current study aimed to characterize this locus, named SPA2. First, we performed a fine linkage mapping of SPA2 (24 cM) with 28 microsatellite markers in 149 multiplex families, which allowed us to reduce the area of investigation to an 18 cM (13 Mb) locus delimited by the markers D9S279 and D9S112. Second, we constructed a linkage disequilibrium (LD) map of this region with 1,536 tag single-nucleotide polymorphisms (SNPs) in 136 families (263 patients). The association was assessed using a transmission disequilibrium test. One tag SNP, rs4979459, yielded a significant P-value (4.9×10−5). Third, we performed an extension association study with rs4979459 and 30 surrounding SNPs in LD with it, in 287 families (668 patients), and in a sample of 139 cases and 163 controls. Strong association was observed in both familial and case/control datasets for several SNPs. In the replication study, carried with 8 SNPs in an independent sample of 232 cases and 149 controls, one SNP, rs6478105, yielded a nominal P-value<3×10−2. Pooled case/control study (371 cases and 312 controls) as well as combined analysis of extension and replication data showed very significant association (P<5×10−4) for 6 of the 8 latter markers (rs7849556, rs10817669, rs10759734, rs6478105, rs10982396, and rs10733612). Finally, haplotype association investigations identified a strongly associated haplotype (P<8.8×10−5) consisting of these 6 SNPs and located in the direct vicinity of the TNFSF15 gene. In conclusion, we have identified within the SPA2 locus a haplotype strongly associated with predisposition to SpA which is located near to TNFSF15, one of the major candidate genes in this region.  相似文献   

17.
To investigate the genetics of late-onset myasthenia gravis (LOMG), we conducted a genome-wide association study imputation of >6 million single nucleotide polymorphisms (SNPs) in 532 LOMG cases (anti–acetylcholine receptor [AChR] antibody positive; onset age ≥50 years) and 2,128 controls matched for sex and population substructure. The data confirm reported TNFRSF11A associations (rs4574025, P = 3.9 × 10−7, odds ratio [OR] 1.42) and identify a novel candidate gene, ZBTB10, achieving genome-wide significance (rs6998967, P = 8.9 × 10−10, OR 0.53). Several other SNPs showed suggestive significance including rs2476601 (P = 6.5 × 10−6, OR 1.62) encoding the PTPN22 R620W variant noted in early-onset myasthenia gravis (EOMG) and other autoimmune diseases. In contrast, EOMG-associated SNPs in TNIP1 showed no association in LOMG, nor did other loci suggested for EOMG. Many SNPs within the major histocompatibility complex (MHC) region showed strong associations in LOMG, but with smaller effect sizes than in EOMG (highest OR ~2 versus ~6 in EOMG). Moreover, the strongest associations were in opposite directions from EOMG, including an OR of 0.54 for DQA1*05:01 in LOMG (P = 5.9 × 10−12) versus 2.82 in EOMG (P = 3.86 × 10−45). Association and conditioning studies for the MHC region showed three distinct and largely independent association peaks for LOMG corresponding to (a) MHC class II (highest attenuation when conditioning on DQA1), (b) HLA-A and (c) MHC class III SNPs. Conditioning studies of human leukocyte antigen (HLA) amino acid residues also suggest potential functional correlates. Together, these findings emphasize the value of subgrouping myasthenia gravis patients for clinical and basic investigations and imply distinct predisposing mechanisms in LOMG.  相似文献   

18.
The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P≤5×10−8). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P≤0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2×10−19 for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9×10−8, n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5×10−6, n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2×10−3, n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.  相似文献   

19.
Although several genome‐wide association studies (GWAS) of non‐syndromic cleft lip with or without cleft palate (NSCL/P) have been reported, more novel association signals are remained to be exploited. Here, we performed an in‐depth analysis of our previously published Chinese GWAS cohort study with replication in an extra dbGaP case‐parent trios and another in‐house Nanjing cohort, and finally identified five novel significant association signals (rs11119445: 3’ of SERTAD4, P = 6.44 × 10−14; rs227227 and rs12561877: intron of SYT14, P = 5.02 × 10−13 and 2.80 × 10−11, respectively; rs643118: intron of TRAF3IP3, P = 4.45 × 10−6; rs2095293: intron of NR6A1, P = 2.98 × 10−5). The mean (standard deviation) of the weighted genetic risk score (wGRS) from these SNPs was 1.83 (0.65) for NSCL/P cases and 1.58 (0.68) for controls, respectively (P = 2.67 × 10−16). Rs643118 was identified as a shared susceptible factor of NSCL/P among Asians and Europeans, while rs227227 may contribute to the risk of NSCL/P as well as NSCPO. In addition, sertad4 knockdown zebrafish models resulted in down‐regulation of sox2 and caused oedema around the heart and mandibular deficiency, compared with control embryos. Taken together, this study has improved our understanding of the genetic susceptibility to NSCL/P and provided further clues to its aetiology in the Chinese population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号