首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA-dependent protein kinase functions in the repair of DNA double strand breaks (DSBs) and in V(D)J recombination. To gain insight into the function of DNA-PK in this process we have carried out a mutation analysis of Ku80 and DNA-PKcs. Mutations at multiple sites within the N-terminal two thirds of Ku80 result in loss of Ku70/80 interaction, loss of DNA end-binding activity and inability to complement Ku80 defective cell lines. In contrast, mutations in the carboxy terminal region of the protein do not impair DNA end-binding activity but decrease the ability of Ku to activate DNA-PK. To gain insight into important functional domains within DNA-PKcs, we have analysed defective mutants, including the mouse scid cell line, and the rodent mutants, irs-20 and V-3. Mutational changes in the carboxy terminal region have been identified in all cases. Our results strongly suggest that the C-terminus of DNA-PKcs is required for kinase activity.  相似文献   

2.
DNA-PKcs and Ku are essential components of the complex that catalyzes non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). Ku, a heterodimeric protein, binds to DNA ends and facilitates recruitment of the catalytic subunit, DNA-PKcs. We have investigated the effect of DNA strand orientation and sequence bias on the activation of DNA-PK. In addition, we assessed the effect of the position and strand orientation of cisplatin adducts on kinase activation. A series of duplex DNA substrates with site-specific cisplatin–DNA adducts placed in three different orientations on the duplex DNA were prepared. Terminal biotin modification and streptavidin (SA) blocking was employed to direct DNA-PK binding to the unblocked termini with a specific DNA strand orientation and cisplatin–DNA adduct position. DNA-PK kinase activity was measured and the results reveal that DNA strand orientation and sequence bias dramatically influence kinase activation, only a portion of which could be attributed to Ku-DNA binding activity. In addition, cisplatin–DNA adduct position resulted in differing degrees of inhibition depending on distance from the terminus as well as strand orientation. These results highlight the importance of how local variations in DNA structure, chemistry and sequence influence DNA-PK activation and potentially NHEJ.  相似文献   

3.
Non-homologous end joining (NHEJ) is the major pathway for the repair of ionizing radiation induced DNA double strand breaks (DSBs) in human cells. Critical to NHEJ is the DNA-dependent interaction of the Ku70/80 heterodimer with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to form the DNA-PK holoenzyme. However, precisely how Ku recruits DNA-PKcs to DSBs ends to enhance its kinase activity has remained enigmatic, with contradictory findings reported in the literature. Here we address the role of the Ku80 C-terminal region (CTR) in the DNA-dependent interaction of Ku70/80 with DNA-PKcs using purified components and defined DNA structures. Our results show that the Ku80 CTR is required for interaction with DNA-PKcs on short segments of blunt ended 25 bp dsDNA or 25 bp dsDNA with a 15-base poly dA single stranded (ss) DNA extension, but this requirement is less stringent on longer dsDNA molecules (35 bp blunt ended dsDNA) or 25 bp duplex DNA with either a 15-base poly dT or poly dC ssDNA extension. Moreover, the DNA-PKcs-Ku complex preferentially forms on 25 bp DNA with a poly-pyrimidine ssDNA extension.Our work clarifies the role of the Ku80 CTR and dsDNA ends on the interaction of DNA-PKcs with Ku and provides key information to guide assembly and biology of NHEJ complexes.  相似文献   

4.
The protein kinase activity of the DNA-dependent protein kinase (DNA-PK) is required for the repair of DNA double-strand breaks (DSBs) via the process of nonhomologous end joining (NHEJ). However, to date, the only target shown to be functionally relevant for the enzymatic role of DNA-PK in NHEJ is the large catalytic subunit DNA-PKcs itself. In vitro, autophosphorylation of DNA-PKcs induces kinase inactivation and dissociation of DNA-PKcs from the DNA end-binding component Ku70/Ku80. Phosphorylation within the two previously identified clusters of phosphorylation sites does not mediate inactivation of the assembled complex and only partially regulates kinase disassembly, suggesting that additional autophosphorylation sites may be important for DNA-PK function. Here, we show that DNA-PKcs contains a highly conserved amino acid (threonine 3950) in a region similar to the activation loop or t-loop found in the protein kinase domain of members of the typical eukaryotic protein kinase family. We demonstrate that threonine 3950 is an in vitro autophosphorylation site and that this residue, as well as other previously identified sites in the ABCDE cluster, is phosphorylated in vivo in irradiated cells. Moreover, we show that mutation of threonine 3950 to the phosphomimic aspartic acid abrogates V(D)J recombination and leads to radiation sensitivity. Together, these data suggest that threonine 3950 is a functionally important, DNA damage-inducible phosphorylation site and that phosphorylation of this site regulates the activity of DNA-PKcs.  相似文献   

5.
Ku is a heterodimeric protein with double-stranded DNA end-binding activity that operates in the process of nonhomologous end joining. Ku is thought to target the DNA-dependent protein kinase (DNA-PK) complex to the DNA and, when DNA bound, can interact and activate the DNA-PK catalytic subunit (DNA-PKcs). We have carried out a 3' deletion analysis of Ku80, the larger subunit of Ku, and shown that the C-terminal 178 amino acid residues are dispensable for DNA end-binding activity but are required for efficient interaction of Ku with DNA-PKcs. Cells expressing Ku80 proteins that lack the terminal 178 residues have low DNA-PK activity, are radiation sensitive, and can recombine the signal junctions but not the coding junctions during V(D)J recombination. These cells have therefore acquired the phenotype of mouse SCID cells despite expressing DNA-PKcs protein, suggesting that an interaction between DNA-PKcs and Ku, involving the C-terminal region of Ku80, is required for DNA double-strand break rejoining and coding but not signal joint formation. To gain further insight into important domains in Ku80, we report a point mutational change in Ku80 in the defective xrs-2 cell line. This residue is conserved among species and lies outside of the previously reported Ku70-Ku80 interaction domain. The mutational change nonetheless abrogates the Ku70-Ku80 interaction and DNA end-binding activity.  相似文献   

6.
DNA-dependent protein kinase (DNA-PK) is composed of a 460-kDa catalytic subunit and the regulatory subunits Ku70 and Ku80. The complex is activated on DNA damage and plays an essential role in double-strand-break repair and V(D)J recombination. In addition, DNA-PK is involved in S-phase checkpoint arrest following irradiation, although its role in damage-induced checkpoint arrest is not clear. In an effort to understand the role of DNA-PK in damage signaling, human and mouse cells containing the DNA-PK catalytic subunit (DNA-PKcs proficient) were compared with those lacking DNA-PKcs for c-Jun N-terminal kinase (JNK) activity that mediates physiologic responses to DNA damage. The DNA-PKcs-proficient cells showed much tighter regulation of JNK activity after DNA damage, while the level of JNK protein in both cell lines remained unchanged. The JNK proteins physically associated with DNA-PKcs and Ku70/Ku80 heterodimer, and the interaction was significantly stimulated after DNA damage. Various JNK isoforms not only contained a DNA-PK phosphorylation consensus site (serine followed by glutamine) but also were phosphorylated by DNA-PK in vitro. Together, our results suggest that DNA damage induces physical interaction between DNA-PK and JNK, which may in turn negatively affect JNK activity through JNK phosphorylation by DNA-PK.  相似文献   

7.
DNA-PKcs-dependent signaling of DNA damage in Dictyostelium discoideum   总被引:1,自引:0,他引:1  
DNA double-strand breaks (DSBs) can be repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). In vertebrates, the first step in NHEJ is recruitment of the DNA-dependent protein kinase (DNA-PK) to DNA termini. DNA-PK consists of a catalytic subunit (DNA-PKcs) that is recruited to DNA ends by the Ku70/Ku80 heterodimer. Although Ku has been identified in a wide variety of organisms, to date DNA-PKcs has only been identified experimentally in vertebrates. Here, we report the identification of DNA-PK in the nonvertebrate Dictyostelium. Dictyostelium Ku80 contains a conserved domain previously implicated in recruiting DNA-PKcs to DNA and consistent with this observation, we have identified DNA-PKcs in the Dictyostelium genome. Disruption of the gene encoding Dictyostelium DNA-PKcs results in sensitivity to DNA DSBs and defective H2AX phosphorylation in response to this form of DNA damage. However, these phenotypes are only apparent when DNA damage is administered in G(1) phase of the cell cycle. These data illustrate a cell cycle-dependent requirement for Dictyostelium DNA-PK in signaling and combating DNA DSBs and represent the first experimental verification of DNA-PKcs in a nonvertebrate organism.  相似文献   

8.
DNA double strand breaks (DSB) are among the most lethal forms of DNA damage and, in humans, are repaired predominantly by the non-homologous end joining (NHEJ) pathway. NHEJ is initiated by the Ku70/80 heterodimer binding free DNA termini and then recruiting the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to form the catalytically active DNA-PK holoenzyme. The extreme C-terminus of Ku80 (Ku80CTD) has been shown to be important for in vitro stimulation of DNA-PK activity and NHEJ in vivo. To better define the mechanism by which the Ku80CTD elicits these activities, we assessed its functional and physical interactions with DNA-PKcs and Ku70/80. The results demonstrate that DNA-PKcs activity could not be complemented by addition of a Ku80CTD suggesting that the physical connection of the C-terminus to the DNA binding domain of Ku70/80 is required for DNA -PKcs activation. Analysis of protein-protein interactions revealed a low but measurable binding of the Ku80CTD for Ku70/80ΔC and for DNA-PKcs while dimer formation and the formation of higher ordered structures of the Ku80CTD was readily apparent. Ku has been shown to tether DNA termini possibly due to protein/protein interactions. Results demonstrate that the presence of the Ku80CTD stimulates this activity possibly through Ku80CTD/Ku80CTD interactions.  相似文献   

9.
DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray scattering, reveal major structural reorganizations that choreograph NHEJ initiation. The Ku80 C-terminal region forms a flexible arm that extends from the DNA-binding core to recruit and retain DNA-PKcs at DSBs. Furthermore, Ku- and DNA-promoted assembly of a DNA-PKcs dimer facilitates trans-autophosphorylation at the DSB. The resulting site-specific autophosphorylation induces a large conformational change that opens DNA-PKcs and promotes its release from DNA ends. These results show how protein and DNA interactions initiate large Ku and DNA-PKcs rearrangements to control DNA-PK biological functions as a macromolecular machine orchestrating assembly and disassembly of the initial NHEJ complex on DNA.  相似文献   

10.
The partitioning-defective 3 (Par3),a key component in the conserved Par3/Par6/aPKC complex,plays fundamentalroles in cell polarity.Herein we report the identification of Ku70 and Ku80 as novel Par3-interacting proteins throughan in vitro binding assay followed by liquid chromatography-tandem mass spectrometry.Ku70/Ku80 proteins are twokey regulatory subunits of the DNA-dependent protein kinase (DNA-PK),which plays an essential role in repairingdouble-strand DNA breaks (DSBs).We determined that the nuclear association of Par3 with Ku70/KuS0 was enhancedby y-irradiation (IR),a potent DSB inducer.Furthermore,DNA-PKcs,the catalytic subunit of DNA-PK,interacted withthe Par3/Ku70/Ku80 complex in response to IR.Par3 over-expression or knockdown was capable of up-or downregulat-ing DNA-PK activity,respectively.Moreover,the Par3 knockdown cells were found to be defective in random plasmidintegration,defective in DSB repair following IR,and radiosensitive,phenotypes similar to that of Ku70 knockdowncells.These findings identify Par3 as a novel component of the DNA-PK complex and implicate an unexpected link ofcell polarity to DSB repair.  相似文献   

11.
Protein phosphatases regulate DNA-dependent protein kinase activity   总被引:12,自引:0,他引:12  
DNA-dependent protein kinase (DNA-PK) is a complex of DNA-PK catalytic subunit (DNA-PKcs) and the DNA end-binding Ku70/Ku80 heterodimer. DNA-PK is required for DNA double strand break repair by the process of nonhomologous end joining. Nonhomologous end joining is a major mechanism for the repair of DNA double strand breaks in mammalian cells. As such, DNA-PK plays essential roles in the cellular response to ionizing radiation and in V(D)J recombination. In vitro, DNA-PK undergoes phosphorylation of all three protein subunits (DNA-PK catalytic subunit, Ku70 and Ku80) and phosphorylation correlates with inactivation of the serine/threonine protein kinase activity of DNA-PK. Here we show that phosphorylation-induced loss of the protein kinase activity of DNA-PK is restored by the addition of the purified catalytic subunit of either protein phosphatase 1 or protein phosphatase 2A (PP2A) and that this reactivation is blocked by the potent protein phosphatase inhibitor, microcystin. We also show that treating human lymphoblastoid cells with either okadaic acid or fostriecin, at PP2A-selective concentrations, causes a 50-60% decrease in DNA-PK protein kinase activity, although the protein phosphatase 1 activity in these cells was unaffected. In vivo phosphorylation of DNA-PKcs, Ku70, and Ku80 was observed when cells were labeled with [(32)P]inorganic phosphate in the presence of the protein phosphatase inhibitor, okadaic acid. Together, our data suggest that reversible protein phosphorylation is an important mechanism for the regulation of DNA-PK protein kinase activity and that the protein phosphatase responsible for reactivation in vivo is a PP2A-like enzyme.  相似文献   

12.
Merkle D  Block WD  Yu Y  Lees-Miller SP  Cramb DT 《Biochemistry》2006,45(13):4164-4172
Nonhomologous end joining (NHEJ) is the primary mechanism by which mammalian cells repair DNA double-strand breaks (DSBs). Proteins known to play a role in NHEJ include the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), the Ku 70/Ku 80 heterodimer (Ku), XRCC4, and DNA ligase IV. One of the main roles of the DNA-PKcs-Ku complex is to bring the ends of the DSB together in a process termed synapsis, prior to end joining. Synapsis results in the autophosphorylation of DNA-PKcs, which is required to make the DNA ends available for ligation. Here, we describe a novel assay using two-photon fluorescence cross-correlation spectroscopy that allows for the analysis of DNA synapsis and end joining in solution using purified proteins. We demonstrate that although autophosphorylation-defective DNA-PKcs does not support DNA ligase-mediated DNA end joining, like wild-type (WT) DNA-PKcs, it is capable of Ku-dependent DNA synapsis in solution. Moreover, we show that, in the presence of Ku, both WT DNA-PKcs and autophosphorylation-defective DNA-PKcs promote the formation of multiple, large multi-DNA complexes in solution, suggesting that, rather than align two opposing DNA ends, multiple DNA-PK molecules may serve to bring multiple DNA ends into the NHEJ complex.  相似文献   

13.
DNA-PKcs is a large (approximately 470 kDa) kinase that plays an essential role in the repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ). DNA-PKcs is recruited to DSBs by the Ku70/Ku80 heterodimer, with which it forms the core of a multiprotein complex that promotes synapsis of the broken DNA ends. We have purified the human DNA-PKcs/Ku70/Ku80 holoenzyme assembled on a DNA molecule. Its three-dimensional (3D) structure at approximately 25 Angstroms resolution was determined by single-particle electron microscopy. Binding of Ku and DNA elicits conformational changes in the FAT and FATC domains of DNA-PKcs. Dimeric particles are observed in which two DNA-PKcs/Ku70/Ku80 holoenzymes interact through the N-terminal HEAT repeats. The proximity of the dimer contacts to the likely positions of the DNA ends suggests that these represent synaptic complexes that maintain broken DNA ends in proximity and provide a platform for access of the various enzymes required for end processing and ligation.  相似文献   

14.
DNA-dependent protein kinase phosphorylation sites in Ku 70/80 heterodimer   总被引:5,自引:0,他引:5  
  相似文献   

15.
DNA non-homologous end joining, the major mechanism for the repair of DNA double-strands breaks (DSB) in mammalian cells requires the DNA-dependent protein kinase (DNA-PK), a complex composed of a large catalytic subunit of 460 kDa (DNA-PKcs) and the heterodimer Ku70–Ku80 that binds to double-stranded DNA ends. Mutations in any of the three subunits of DNA-PK lead to extreme radiosensitivity and DSB repair deficiency. Here we show that the 283 C-terminal amino acids of Ku80 introduced into the Chinese hamster ovary cell line CHO-K1 have a dominant negative effect. Expression of Ku(449–732) in CHO cells was verified by northern blot analysis and resulted in decreased Ku-dependent DNA end-binding activity, a diminished capacity to repair DSBs as determined by pulsed field gel electrophoresis and decreased radioresistance determined by clonogenic survival. The stable modifications observed at the molecular and cellular level suggest that this fragment of Ku80 confers a dominant negative effect providing an important mechanism to sensitise radioresistant cells.  相似文献   

16.
We have determined the effect of cisplatin–DNA damage on the ability of the DNA-dependent protein kinase (DNA-PK) to interact with duplex DNA molecules in vitro. The Ku DNA binding subunits of DNA-PK display a reduced ability to translocate on duplex DNA containing cisplatin–DNA adducts compared to control, undamaged duplex DNA. The decreased rates of translocation resulted in a decrease in the association of the p460 catalytic subunit of DNA-PK (DNA-PKcs) with the Ku–DNA complex. In addition to a decrease in DNA-PKcs association, the DNA-PKcs that is bound with Ku at a DNA end containing cisplatin–DNA adducts has a reduced catalytic rate compared to heterotrimeric DNA-PK assembled on undamaged DNA. The position of the cisplatin–DNA lesion from the terminus also effects kinase activation, with maximal inhibition occurring when the lesion is closer to the terminus. These results are consistent with a model for DNA-PK activation where the Ku dimer translocates away from the DNA terminus and facilitates the association of DNA-PKcs which interacts with both Ku and DNA resulting in kinase activation. The presence of cisplatin adducts decreases the ability to translocate away from the terminus and results in the formation of inactive kinase complexes at the DNA terminus. The results are discussed with respect to the ability of cisplatin to sensitize cells to DNA damage induced by ionizing radiation and the ability to repair DNA double-strand breaks.  相似文献   

17.
Yu Y  Mahaney BL  Yano K  Ye R  Fang S  Douglas P  Chen DJ  Lees-Miller SP 《DNA Repair》2008,7(10):1680-1692
Nonhomologous end joining (NHEJ) is the major pathway for the repair of DNA double strand breaks (DSBs) in human cells. NHEJ requires the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku70, Ku80, XRCC4, DNA ligase IV and Artemis, as well as DNA polymerases mu and lambda and polynucleotide kinase. Recent studies have identified an additional participant, XLF, for XRCC4-like factor (also called Cernunnos), which interacts with the XRCC4-DNA ligase IV complex and stimulates its activity in vitro, however, its precise role in the DNA damage response is not fully understood. Since the protein kinase activity of DNA-PKcs is required for NHEJ, we asked whether XLF might be a physiological target of DNA-PK. Here, we have identified two major in vitro DNA-PK phosphorylation sites in the C-terminal region of XLF, serines 245 and 251. We show that these represent the major phosphorylation sites in XLF in vivo and that serine 245 is phosphorylated in vivo by DNA-PK, while serine 251 is phosphorylated by Ataxia-Telangiectasia Mutated (ATM). However, phosphorylation of XLF did not have a significant effect on the ability of XLF to interact with DNA in vitro or its recruitment to laser-induced DSBs in vivo. Similarly, XLF in which the identified in vivo phosphorylation sites were mutated to alanine was able to complement the DSB repair defect as well as radiation sensitivity in XLF-deficient 2BN cells. We conclude that phosphorylation of XLF at these sites does not play a major role in the repair of IR-induced DSBs in vivo.  相似文献   

18.
Muller C  Calsou P  Salles B 《Biochimie》2000,82(1):25-28
The DNA-dependent protein kinase plays a critical role in mammalian DNA double strand break (DSB) repair and in specialized recombination, such as lymphoid V(D)J recombination. Its regulatory subunit Ku (dimer of the Ku70 and Ku80 protein) binds to DNA and recruits the kinase catalytic sub-unit, DNA-PKcs. We show here that three different strains deficient in either the Ku80 (xrs-6) or DNA-PKcs (V-3, scid) component of DNA-PK are markedly sensitive (3.5- to 5-fold) to a group of DNA cross-linking agents, the nitrogen mustards (NMs) (melphalan and mechlorethamine) as compared to their parental cell line. Importantly, the level of hypersensitivity to these drugs was close to the level of hypersensitivity observed for radiomimetic agents that create DSBs in DNA (bleomycin and neocarzinostatin). In addition, sensitivity to NMs was restored to the parental level in the xrs-6 cell line stably transfected with the human Ku80 gene (xrs-6/Ku80), showing unequivocally that DNA-PK is involved in this phenotype. These results indicate that a function of the whole DNA-PK protein complex is involved in the cellular response to NMs and suggest that the repair of DNA interstrand cross-links induced in DNA by NMs involved a DNA-PK dependent pathway that shares common features with DNA DSBs repair.  相似文献   

19.
Li B  Comai L 《Nucleic acids research》2002,30(17):3653-3661
The DNA-dependent protein kinase (DNA-PK) complex, which is composed of a DNA-dependent kinase subunit (DNA-PKcs) and the Ku70/80 heterodimer, is involved in DNA double-strand break repair by non-homologous end joining (NHEJ). Ku70/80 interacts with the Werner syndrome protein (WRN) and stimulates WRN exonuclease activity. To investigate a possible function of WRN in NHEJ, we have examined the relationship between DNA-PKcs, Ku and WRN. First, we showed that WRN forms a complex with DNA-PKcs and Ku in solution. Next, we determined whether this complex assembles on DNA ends. Interestingly, the addition of WRN to a Ku:DNA-PKcs:DNA complex results in the displacement of DNA-PKcs from the DNA, indicating that the triple complex WRN:Ku:DNA-PKcs cannot form on DNA ends. The displacement of DNA-PKcs from DNA requires the N- and C-terminal regions of WRN, both of which make direct contact with the Ku70/80 heterodimer. Moreover, exonuclease assays indicate that DNA-PKcs does not protect DNA from the nucleolytic action of WRN. These results suggest that WRN may influence the mechanism by which DNA ends are processed.  相似文献   

20.
Non-homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks (DSBs) requires the formation of a Ku70/Ku80/DNA-PKcs complex at the DSB sites. A previous study has revealed Ku80 cleavage by caspase-3 during apoptosis. However, it remains largely unknown whether and how Ku80 cleavage affects its function in mediating NHEJ-mediated DNA repair. Here we report that Ku80 can be cleaved by caspases-2 at D726 upon a transient etoposide treatment. Caspase-2-mediated Ku80 cleavage promotes Ku80/DNA-PKcs interaction as the D726A mutation diminished Ku80 interaction with DNA-PKcs, while a Ku80 truncate (Ku80 ΔC6) lacking all the 6 residues following D726 rescued the weakened Ku80/DNA-PKcs interaction caused by caspase-2 knockdown. As a result, depletion or inhibition of caspase-2 impairs NHEJ-mediated DNA repair, and such impairment can be reversed by Ku80 ΔC6 overexpression. Taken together, our current study provides a novel mechanism for regulating NHEJ-mediated DNA repair, and sheds light on the function of caspase-2 in genomic stability maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号