首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background

Lactobacillus spp. potentially contribute to health by modulating bacterial biofilm formation, but their effects on the overall oral microbiota remain unclear.

Methods and Findings

Oral microbiota was characterized via 454-pyrosequencing of the 16S rDNA hypervariable region V3-V4 after 12 weeks of daily Lactobacillus reuteri DSM 17938 and PTA 5289 consumption. Forty-four adults were assigned to a test group (n = 22) that received lactobacilli lozenges (108 CFU of each strain/lozenge) or a control group that received placebo (n = 22). Presence of L. reuteri was confirmed by cultivation and species specific PCR. Tooth biofilm samples from 16 adults before, during, and after exposure were analyzed by pyrosequencing. A total of 1,310,292 sequences were quality filtered. After removing single reads, 257 species or phylotypes were identified at 98.5% identity in the Human Oral Microbiome Database. Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria, and Actinobacteria were the most abundant phyla. Streptococcus was the most common genus and the S. oralis/S. mitis/S. mitis bv2/S. infantis group comprised the dominant species. The number of observed species was unaffected by L. reuteri exposure. However, subjects who had consumed L. reuteri were clustered in a principal coordinates analysis relative to scattering at baseline, and multivariate modeling of pyrosequencing microbiota, and culture and PCR detected L. reuteri separated baseline from 12-week samples in test subjects. L. reuteri intake correlated with increased S. oralis/S. mitis/S. mitis bv2/S. infantis group and Campylobacter concisus, Granulicatella adiacens, Bergeyella sp. HOT322, Neisseria subflava, and SR1 [G-1] sp. HOT874 detection and reduced S. mutans, S. anginosus, N. mucosa, Fusobacterium periodicum, F. nucleatum ss vincentii, and Prevotella maculosa detection. This effect had disappeared 1 month after exposure was terminated.

Conclusions

L. reuteri consumption did not affect species richness but induced a shift in the oral microbiota composition. The biological relevance of this remains to be elucidated.

Trial Registration

ClinicalTrials.gov NCT02311218  相似文献   

2.

Background & Aims

Diseases of the human gastrointestinal (GI) tract are often accompanied by diarrhea with profound alterations in the GI microbiota termed dysbiosis. Whether dysbiosis is due to the disease itself or to the accompanying diarrhea remains elusive. With this study we characterized the net effects of osmotic diarrhea on the composition of the GI microbiota in the absence of disease.

Methods

We induced osmotic diarrhea in four healthy adults by oral administration of polyethylene glycol 4000 (PEG). Stool as well as mucosa specimens were collected before, during and after diarrhea and 16S rDNA-based microbial community profiling was used to assess the microbial community structure.

Results

Stool and mucosal microbiotas were strikingly different, with Firmicutes dominating the mucosa and Bacteroidetes the stools. Osmotic diarrhea decreased phylotype richness and showed a strong tendency to equalize the otherwise individualized microbiotas on the mucosa. Moreover, diarrhea led to significant relative shifts in the phyla Bacteroidetes and Firmicutes and to a relative increase in the abundance of Proteobacteria on the mucosa, a phenomenon also noted in several inflammatory and diarrheal GI diseases.

Conclusions

Changes in microbial community structure induced by osmotic diarrhea are profound and show similarities to changes observed in other GI diseases including IBD. These effects so must be considered when specimens from diarrheal diseases (i.e. obtained by stratification of samples according to diarrheal status) or conditions wherein bowel preparations like PEG (i.e. specimens obtained during endoscopy) are used.  相似文献   

3.

Objectives

This study was aimed to assess the diversity of the meconium microbiome and determine if the bacterial community is affected by maternal diabetes status.

Methods

The first intestinal discharge (meconium) was collected from 23 newborns stratified by maternal diabetes status: 4 mothers had pre-gestational type 2 diabetes mellitus (DM) including one mother with dizygotic twins, 5 developed gestational diabetes mellitus (GDM) and 13 had no diabetes. The meconium microbiome was profiled using multi-barcode 16S rRNA sequencing followed by taxonomic assignment and diversity analysis.

Results

All meconium samples were not sterile and contained diversified microbiota. Compared with adult feces, the meconium showed a lower species diversity, higher sample-to-sample variation, and enrichment of Proteobacteria and reduction of Bacteroidetes. Among the meconium samples, the taxonomy analyses suggested that the overall bacterial content significantly differed by maternal diabetes status, with the microbiome of the DM group showing higher alpha-diversity than that of no-diabetes or GDM groups. No global difference was found between babies delivered vaginally versus via Cesarean-section. Regression analysis showed that the most robust predictor for the meconium microbiota composition was the maternal diabetes status that preceded pregnancy. Specifically, Bacteroidetes (phyla) and Parabacteriodes (genus) were enriched in the meconium in the DM group compared to the no-diabetes group.

Conclusions

Our study provides evidence that meconium contains diversified microbiota and is not affected by the mode of delivery. It also suggests that the meconium microbiome of infants born to mothers with DM is enriched for the same bacterial taxa as those reported in the fecal microbiome of adult DM patients.  相似文献   

4.

Objective

To evaluate the efficacy and safety of Lactobacillus reuteri DSM 17938 for treating infantile colic.

Methods

A systematic literature retrieval was carried out to obtain randomized controlled trials of L. reuteri DSM 17938 for infantile colic. Trials were performed before May 2015 and retrieved from the PubMed, EMBASE, Cochrane library, CNKI, WanFang, VIP, and CBM databases. Data extraction and quality evaluation of the trials were performed independently by two investigators. A meta-analysis was performed using STATA version 12.0.

Results

Six randomized controlled trials of 423 infants with colic were included. Of these subjects, 213 were in the L. reuteri group, and 210 were in the placebo group. Lactobacillus reuteri increased colic treatment effectiveness at two weeks (RR = 2.84; 95% CI: 1.24–6.50; p = 0.014) and three weeks (relative risk [RR] = 2.33; 95% CI: 1.38–3.93; P = 0.002) but not at four weeks (RR = 1.41; 95% CI: 0.52–3.82; P = 0.498). Lactobacillus reuteri decreased crying time (min/d) at two weeks (weighted mean difference [WMD] = –42.89; 95% CI: –60.50 to –25.29; P = 0.000) and three weeks (WMD = –45.83; 95% CI: –59.45 to –32.21; P = 0.000). In addition, L. reuteri did not influence infants’ weight, length or head circumference and was not associated with serious adverse events.

Conclusions

Lactobacillus reuteri possibly increased the effectiveness of treatment for infantile colic and decreased crying time at two to three weeks without causing adverse events. However, these protective roles are usurped by gradual physiological improvements. The study is limited by the heterogeneity of the trials and should be considered with caution. Higher quality, multicenter randomized controlled trials with larger samples are needed.  相似文献   

5.

Objective

To investigate whether the specific strains of Lactobacillus reuteri modulates the metabolic syndrome in Apoe−/− mice.

Methods

8 week-old Apoe−/− mice were subdivided into four groups who received either L. reuteri ATCC PTA 4659 (ATCC), DSM 17938 (DSM), L6798, or no bacterial supplement in the drinking water for 12 weeks. The mice were fed a high-fat Western diet with 0.2% cholesterol and body weights were monitored weekly. At the end of the study, oral glucose and insulin tolerance tests were conducted. In addition, adipose and liver weights were recorded along with analyses of mRNA expression of ileal Angiopoietin-like protein 4 (Angptl4), the macrophage marker F4/80 encoded by the gene Emr1 and liver Acetyl-CoA carboxylase 1 (Acc1), Fatty acid synthase (Fas) and Carnitine palmitoyltransferase 1a (Cpt1a). Atherosclerosis was assessed in the aortic root region of the heart.

Results and Conclusions

Mice receiving L. reuteri ATCC gained significantly less body weight than the control mice, whereas the L6798 mice gained significantly more. Adipose and liver weights were also reduced in the ATCC group. Serum insulin levels were lower in the ATCC group, but no significant effects were observed in the glucose or insulin tolerance tests. Lipogenic genes in the liver were not altered by any of the bacterial treatments, however, increased expression of Cpt1a was found in the ATCC group, indicating increased β-oxidation. Correspondingly, the liver trended towards having lower fat content. There were no effects on inflammatory markers, blood cholesterol or atherosclerosis. In conclusion, the probiotic L. reuteri strain ATCC PTA 4659 partly prevented diet-induced obesity, possibly via a previously unknown mechanism of inducing liver expression of Cpt1a.  相似文献   

6.

Background

Few studies have tested the small intestine microbiota in humans, where most nutrient digestion and absorption occur. Here, our objective was to examine the duodenal microbiota between obese and normal volunteers using metagenomic techniques.

Methodology/Principal Findings

We tested duodenal samples from five obese and five normal volunteers using 16S rDNA V6 pyrosequencing and Illumina MiSeq deep sequencing. The predominant phyla of the duodenal microbiota were Firmicutes and Actinobacteria, whereas Bacteroidetes were absent. Obese individuals had a significant increase in anaerobic genera (p < 0.001) and a higher abundance of genes encoding Acyl-CoA dehydrogenase (p = 0.0018) compared to the control group. Obese individuals also had a reduced abundance of genes encoding sucrose phosphorylase (p = 0.015) and 1,4-alpha-glucan branching enzyme (p = 0.05). Normal weight people had significantly increased FabK (p = 0.027), and the glycerophospholipid metabolism pathway revealed the presence of phospholipase A1 only in the control group (p = 0.05).

Conclusions/Significance

The duodenal microbiota of obese individuals exhibit alterations in the fatty acid and sucrose breakdown pathways, probably induced by diet imbalance.  相似文献   

7.

Background

Studies of the bacterial communities of the gut microbiota have revealed a shift in the ratio of Firmicutes and Bacteroidetes in obese patients. Determining the variations of microbial communities in feces may be beneficial for the identification of specific profiles in patients with abnormal weights. The roles of the archaeon Methanobrevibacter smithii and Lactobacillus species have not been described in these studies.

Methods and Findings

We developed an efficient and robust real-time PCR tool that includes a plasmid-based internal control and allows for quantification of the bacterial divisions Bacteroidetes, Firmicutes, and Lactobacillus as well as the methanogen M. smithii. We applied this technique to the feces of 20 obese subjects, 9 patients with anorexia nervosa, and 20 normal-weight healthy controls. Our results confirmed a reduction in the Bacteroidetes community in obese patients (p<0.01). We found a significantly higher Lactobacillus species concentration in obese patients than in lean controls (p = 0.0197) or anorexic patients (p = 0.0332). The M. smithii concentration was much higher in anorexic patients than in the lean population (p = 0.0171).

Conclusions

Lactobacillus species are widely used as growth promoters in the farm industry and are now linked to obesity in humans. The study of the bacterial flora in anorexic patients revealed an increase in M. smithii. This increase might represent an adaptive use of nutrients in this population.  相似文献   

8.

Background

The human intestinal microbiota is a crucial factor in the pathogenesis of various diseases, such as metabolic syndrome or inflammatory bowel disease (IBD). Yet, knowledge about the role of environmental factors such as smoking (which is known to influence theses aforementioned disease states) on the complex microbial composition is sparse. We aimed to investigate the role of smoking cessation on intestinal microbial composition in 10 healthy smoking subjects undergoing controlled smoking cessation.

Methods

During the observational period of 9 weeks repetitive stool samples were collected. Based on abundance of 16S rRNA genes bacterial composition was analysed and compared to 10 control subjects (5 continuing smokers and 5 non-smokers) by means of Terminal Restriction Fragment Length Polymorphism analysis and high-throughput sequencing.

Results

Profound shifts in the microbial composition after smoking cessation were observed with an increase of Firmicutes and Actinobacteria and a lower proportion of Bacteroidetes and Proteobacteria on the phylum level. In addition, after smoking cessation there was an increase in microbial diversity.

Conclusions

These results indicate that smoking is an environmental factor modulating the composition of human gut microbiota. The observed changes after smoking cessation revealed to be similar to the previously reported differences in obese compared to lean humans and mice respectively, suggesting a potential pathogenetic link between weight gain and smoking cessation. In addition they give rise to a potential association of smoking status and the course of IBD.  相似文献   

9.

Background

Recent evidence suggests that there is a link between metabolic diseases and bacterial populations in the gut. The aim of this study was to assess the differences between the composition of the intestinal microbiota in humans with type 2 diabetes and non-diabetic persons as control.

Methods and Findings

The study included 36 male adults with a broad range of age and body-mass indices (BMIs), among which 18 subjects were diagnosed with diabetes type 2. The fecal bacterial composition was investigated by real-time quantitative PCR (qPCR) and in a subgroup of subjects (N = 20) by tag-encoded amplicon pyrosequencing of the V4 region of the 16S rRNA gene. The proportions of phylum Firmicutes and class Clostridia were significantly reduced in the diabetic group compared to the control group (P = 0.03). Furthermore, the ratios of Bacteroidetes to Firmicutes as well as the ratios of Bacteroides-Prevotella group to C. coccoides-E. rectale group correlated positively and significantly with plasma glucose concentration (P = 0.04) but not with BMIs. Similarly, class Betaproteobacteria was highly enriched in diabetic compared to non-diabetic persons (P = 0.02) and positively correlated with plasma glucose (P = 0.04).

Conclusions

The results of this study indicate that type 2 diabetes in humans is associated with compositional changes in intestinal microbiota. The level of glucose tolerance should be considered when linking microbiota with metabolic diseases such as obesity and developing strategies to control metabolic diseases by modifying the gut microbiota.  相似文献   

10.

Background

There are few carefully-designed studies investigating the safety of individual probiotics approved under Investigational New Drug policies.

Objectives

The primary aim of this prospective, double-blind placebo-controlled trial was to investigate if daily treatment of adults with Lactobacillus reuteri DSM 17938 (LR) for 2 months is safe and well-tolerated. Our secondary aim was to determine if LR treatment has immune effects as determined by regulatory T cell percentages, expression of toll-like receptors (TLR)-2 and −4 on circulating peripheral blood mononuclear cells (PMBCs), cytokine expression by stimulated PBMC, and intestinal inflammation as measured by fecal calprotectin.

Methods

Forty healthy adults were randomized to a daily dose of 5×108 CFUs of LR (n = 30) or placebo (n = 10) for 2 months. Participants completed a daily diary card and had 7 clinic visits during treatment and observation.

Results

There were no severe adverse events (SAEs) and no significant differences in adverse events (AEs). There were no differences in PBMC subclasses, TLRs, or cytokine expression after treatment. The probiotic-treated group had a significantly higher fecal calprotectin level than the placebo group after 2 months of treatment: 50 µg/g (IQR 24–127 µg/g) vs. 17 µg/g (IQR 11–26 µg/g), p = 0.03, although values remained in the normal clinical range (0–162.9 µg/g). LR vials retained >108 CFUs viable organisms/ml.

Conclusions

LR is safe and well tolerated in adults, without significant changes in immunologic markers. There was a small but significant increase in fecal calprotectin, perhaps indicating some element of immune recognition at the intestinal level.

Trial Registration

Clinical Trials.gov NCT00922727  相似文献   

11.

Background

Recent advances in culture-independent approaches have enabled insights into the diversity, complexity, and individual variability of gut microbial communities.

Objectives

To examine the effect of oral administration of Saccharomyces (S.) boulardii and mode of delivery on the intestinal microbial community in preterm infants.

Study Design

Stool samples were collected from preterm newborns randomly divided into two groups: a probiotic-receiving group (n = 18) or a placebo group (n = 21). Samples were collected before probiotic intake (day 0), and after 2 and 6 weeks of supplementation. The composition of colonizing bacteria was assessed by 16S ribosomal RNA (rRNA) gene sequencing of fecal samples using the Ion 16S Metagenomics Kit and the Ion Torrent Personal Genome Machine platform.

Results

A total of 11932257 reads were generated, and were clustered into 459, 187, and 176 operational taxonomic units at 0 days, 2 weeks, and 6 weeks, respectively. Of the 17 identified phyla, Firmicutes Actinobacteria, Proteobacteria, and Bacteroidetes were universal. The microbial community differed at day 0 compared with at 2 weeks and 6 weeks. There was a tendency for increased bacterial diversity at 2 weeks and 6 weeks compared with day 0, and infants with a gestational age of 31 weeks or higher presented increased bacterial diversity prior to S. boulardii administration. Firmicutes and Proteobacteria remained stable during the observation period, whereas Actinobacteria and Bacteroidetes increased in abundance, the latter particularly more sharply in vaginally delivered infants.

Conclusion

While the mode of delivery may influence the development of a microbial community, this study had not enough power to detect statistical differences between cohorts supplemented with probiotics, and in a consequence, to speculate on S. boulardii effect on gut microbiome composition in preterm newborns.  相似文献   

12.

Background

The human gastrointestinal tract is inhabited by a very diverse symbiotic microbiota, the composition of which depends on host genetics and the environment. Several studies suggested that the host genetics may influence the composition of gut microbiota but no genes involved in host control were proposed. We investigated the effects of the wild type and mutated alleles of the gene, which encodes the protein called pyrin, one of the regulators of innate immunity, on the composition of gut commensal bacteria. Mutations in MEFV lead to the autoinflammatory disorder, familial Mediterranean fever (FMF, MIM249100), which is characterized by recurrent self-resolving attacks of fever and polyserositis, with no clinical signs of disease in remission.

Methodology/Principal Findings

A total of 19 FMF patients and eight healthy individuals were genotyped for mutations in the MEFV gene and gut bacterial diversity was assessed by sequencing 16S rRNA gene libraries and FISH analysis. These analyses demonstrated significant changes in bacterial community structure in FMF characterized by depletion of total numbers of bacteria, loss of diversity, and major shifts in bacterial populations within the Bacteroidetes, Firmicutes and Proteobacteria phyla in attack. In remission with no clinical signs of disease, bacterial diversity values were comparable with control but still, the bacterial composition was substantially deviant from the norm. Discriminant function analyses of gut bacterial diversity revealed highly specific, well-separated and distinct grouping, which depended on the allele carrier status of the host.

Conclusions/Significance

This is the first report that clearly establishes the link between the host genotype and the corresponding shifts in the gut microbiota (the latter confirmed by two independent techniques). It suggests that the host genetics is a key factor in host-microbe interaction determining a specific profile of commensal microbiota in the human gut.  相似文献   

13.

Background

Prebiotics, probiotics and synbiotics can be used to modulate both the composition and activity of the gut microbiota and thereby potentially affecting host health beneficially. The aim of this study was to investigate the effects of eight synbiotic combinations on the composition and activity of human fecal microbiota using a four-stage semicontinuous model system of the human colon.

Methods and Findings

Carbohydrates were selected by their ability to enhance growth of the probiotic bacteria Lactobacillus acidophilus NCFM (NCFM) and Bifidobacterium animalis subsp. lactis Bl-04 (Bl-04) under laboratory conditions. The most effective carbohydrates for each probiotic were further investigated, using the colonic model, for the ability to support growth of the probiotic bacteria, influence the composition of the microbiota and stimulate formation of short-chain fatty acids (SCFA).The following combinations were studied: NCFM with isomaltulose, cellobiose, raffinose and an oat β-glucan hydrolysate (OBGH) and Bl-04 with melibiose, xylobiose, raffinose and maltotriose. All carbohydrates showed capable of increasing levels of NCFM and Bl-04 during fermentations in the colonic model by 103–104 fold and 10–102 fold, respectively. Also the synbiotic combinations decreased the modified ratio of Bacteroidetes/Firmicutes (calculated using qPCR results for Bacteroides-Prevotella-Porphyromonas group, Clostridium perfringens cluster I, Clostridium coccoides - Eubacterium rectale group and Clostridial cluster XIV) as well as significantly increasing SCFA levels, especially acetic and butyric acid, by three to eight fold, as compared to the controls. The decreases in the modified ratio of Bacteroidetes/Firmicutes were found to be correlated to increases in acetic and butyric acid (p = 0.04 and p = 0.03, respectively).

Conclusions

The results of this study show that all synbiotic combinations investigated are able to shift the predominant bacteria and the production of SCFA of fecal microbiota in a model system of the human colon, thereby potentially being able to manipulate the microbiota in a way connected to human health.  相似文献   

14.

Background

Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring.

Methodology/Principal Findings

Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and α-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC∶A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies.

Conclusions/Significance

This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.  相似文献   

15.
16.

Background

Associations between dietary patterns, metabolic and inflammatory markers and gut microbiota are yet to be elucidated.

Objectives

We aimed to characterize dietary patterns in overweight and obese subjects and evaluate the different dietary patterns in relation to metabolic and inflammatory variables as well as gut microbiota.

Design

Dietary patterns, plasma and adipose tissue markers, and gut microbiota were evaluated in a group of 45 overweight and obese subjects (6 men and 39 women). A group of 14 lean subjects were also evaluated as a reference group.

Results

Three clusters of dietary patterns were identified in overweight/obese subjects. Cluster 1 had the least healthy eating behavior (highest consumption of potatoes, confectionary and sugary drinks, and the lowest consumption of fruits that was associated also with low consumption of yogurt, and water). This dietary pattern was associated with the highest LDL cholesterol, plasma soluble CD14 (p = 0.01) a marker of systemic inflammation but the lowest accumulation of CD163+ macrophages with anti-inflammatory profile in adipose tissue (p = 0.05). Cluster 3 had the healthiest eating behavior (lower consumption of confectionary and sugary drinks, and highest consumption of fruits but also yogurts and soups). Subjects in this Cluster had the lowest inflammatory markers (sCD14) and the highest anti-inflammatory adipose tissue CD163+ macrophages. Dietary intakes, insulin sensitivity and some inflammatory markers (plasma IL6) in Cluster 3 were close to those of lean subjects. Cluster 2 was in-between clusters 1 and 3 in terms of healthfulness. The 7 gut microbiota groups measured by qPCR were similar across the clusters. However, the healthiest dietary cluster had the highest microbial gene richness, as evaluated by quantitative metagenomics.

Conclusion

A healthier dietary pattern was associated with lower inflammatory markers as well as greater gut microbiota richness in overweight and obese subjects.

Trial Registration

ClinicalTrials.gov NCT01314690  相似文献   

17.

Background

Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study.

Method

The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR – TTGE) method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota.

Results and Discussion

The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes.

Conclusion

Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes.  相似文献   

18.

Background

Acidform gel, an acid-buffering product that inactivates spermatozoa, may be an effective topical non-hormonal contraceptive. This study was designed to evaluate the safety of vaginal dosing and effects of Acidform on mucosal immune mediators, antimicrobial properties of genital secretions, and vaginal microbiota.

Methods

Thirty-six sexually abstinent U.S. women were randomized to apply Acidform or hydroxyethylcellulose (HEC) placebo gel twice daily for 14 consecutive days. Safety was assessed by symptoms and pelvic examination. The impact of gel on mucosal immunity was assessed by quantifying cytokines, chemokines, antimicrobial proteins and antimicrobial activity of genital secretions collected by cervicovaginal lavage (CVL) at screening, 2 hours after gel application, and on days 7, 14 and 21. Vaginal microbiota was characterized at enrollment and day 14 using species-specific quantitative PCR assays.

Results

The median vaginal and cervical pH was significantly lower 2 hours after application of Acidform and was associated with an increase in the bactericidal activity of CVL against E. coli. However, 65% of women who received Acidform had at least one local adverse event compared with 11% who received placebo (p = 0.002). While there was no increase in inflammatory cytokines or chemokines, CVL concentrations of lactoferrin and interleukin-1 receptor antagonist (IL-1ra), an anti-inflammatory protein, were significantly lower following Acidform compared to HEC placebo gel application. There were no significant changes in Lactobacillus crispatus or Lactobacillus jensenii in either group but there was a decrease in Gardnerella vaginalis in the Acidform group (p = 0.08).

Conclusions

Acidform gel may augment mucosal defense as evidenced by an increase in bactericidal activity of genital secretions against E. coli and a decrease in Gardnerella vaginalis colonization. However, Acidform was associated with more irritation than placebo and lower levels of antimicrobial (lactoferrin) and anti-inflammatory (IL-1ra) proteins. These findings indicate the need for additional safety studies of this candidate non-hormonal contraceptive.

Trial Registration

ClinicalTrials.gov NCT00850837  相似文献   

19.
Hepatic encephalopathy (HE) represents a dysfunctional gut-liver-brain axis in cirrhosis which can negatively impact outcomes. This altered gut-brain relationship has been treated using gut-selective antibiotics such as rifaximin, that improve cognitive function in HE, especially its subclinical form, minimal HE (MHE). However, the precise mechanism of the action of rifaximin in MHE is unclear. We hypothesized that modulation of gut microbiota and their end-products by rifaximin would affect the gut-brain axis and improve cognitive performance in cirrhosis. Aim To perform a systems biology analysis of the microbiome, metabolome and cognitive change after rifaximin in MHE.

Methods

Twenty cirrhotics with MHE underwent cognitive testing, endotoxin analysis, urine/serum metabolomics (GC and LC-MS) and fecal microbiome assessment (multi-tagged pyrosequencing) at baseline and 8 weeks post-rifaximin 550 mg BID. Changes in cognition, endotoxin, serum/urine metabolites (and microbiome were analyzed using recommended systems biology techniques. Specifically, correlation networks between microbiota and metabolome were analyzed before and after rifaximin.

Results

There was a significant improvement in cognition(six of seven tests improved,p<0.01) and endotoxemia (0.55 to 0.48 Eu/ml, p = 0.02) after rifaximin. There was a significant increase in serum saturated (myristic, caprylic, palmitic, palmitoleic, oleic and eicosanoic) and unsaturated (linoleic, linolenic, gamma-linolenic and arachnidonic) fatty acids post-rifaximin. No significant microbial change apart from a modest decrease in Veillonellaceae and increase in Eubacteriaceae was observed. Rifaximin resulted in a significant reduction in network connectivity and clustering on the correlation networks. The networks centered on Enterobacteriaceae, Porphyromonadaceae and Bacteroidaceae indicated a shift from pathogenic to beneficial metabolite linkages and better cognition while those centered on autochthonous taxa remained similar.

Conclusions

Rifaximin is associated with improved cognitive function and endotoxemia in MHE, which is accompanied by alteration of gut bacterial linkages with metabolites without significant change in microbial abundance.

Trial Registration

ClinicalTrials.gov NCT01069133  相似文献   

20.

Background

Umbilical cord milking (UCM) improves blood pressure and urine output, and decreases the need for transfusions in comparison to immediate cord clamping (ICC). The immediate effect of UCM in the first few minutes of life and the impact on neonatal resuscitation has not been described.

Methods

Women admitted to a tertiary care center and delivering before 32 weeks gestation were randomized to receive UCM or ICC. A blinded analysis of physiologic data collected on the newborns in the delivery room was performed using a data acquisition system. Heart rate (HR), SpO2, mean airway pressure (MAP), and FiO2 in the delivery room were compared between infants receiving UCM and infants with ICC.

Results

41 of 60 neonates who were enrolled and randomized had data from analog tracings at birth. 20 of these infants received UCM and 21 had ICC. Infants receiving UCM had higher heart rates and higher SpO2 over the first 5 minutes of life, were exposed to less FiO2 over the first 10 minutes of life than infants with ICC.

Conclusions

UCM when compared to ICC had decreased need for support immediately following delivery, and in situations where resuscitation interventions were needed immediately, UCM has the advantage of being completed in a very short time to improve stability following delivery.

Trial Registration

ClinicalTrials.gov NCT01434732  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号