首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prostate cancer is a lethal cancer for the invasion and metastasis in its earlier period. P53 is a tumor suppressor gene which plays a critical role on safeguarding the integrity of genome. However, loss of P53 facilitates or inhibits the invasion and metastasis of tumor is still suspended. In this study, we are going to explain whether loss of P53 affect the invasion and metastasis of prostate cancer cells. To explore whether loss of P53 influences the invasion and metastasis ability of prostate cancer cells, we first compared the invasion ability of si-P53 treated cells and control cells by wound healing, transwell assay, and adhesion assay. We next tested the activity of MMP-2, MMP-9, and MMP-14 by western blot and gelatin zymography. Moreover, we employed WB and IF to identify the EMT containing E-cad, N-cad, vimentin, etc. We also examined the expression of cortactin, cytoskeleton, and paxillin by immunofluorescence, and tested the expression of ERK and JNK by WB. Finally, we applied WB to detect the expression of FAK, Src, and the phosphorylation of them to elucidate the mechanism of si-P53 influencing invasion and metastasis. According to the inhibition rate of si-P53, we choose the optimized volume of si-P53. With the volume, we compare the invasion and metastasis ability of Du145 and si-P53 treated cells. We find si-P53 promotes the invasion and metastasis in prostate cancer cells, increases the expression and activity of MMP-2/9 and MMP-14. Also, si-P53 promotes EMT and cytoskeleton rearrangement. Further analyses explain that this effect is associated with FAK-Src signaling pathway. Loss of P53 promotes the invasion and metastasis ability of prostate cancer cells and the mechanism is correlated with FAK-Src signaling pathway. P53 is involved in the context of invasion and metastasis.  相似文献   

2.
3.
Human ribonuclease inhibitor (RI) is a cytoplasmic acidic protein possibly involved in biological functions other than the inhibition of RNase A and angiogenin activities. We have previously shown that RI can inhibit growth and metastasis in some cancer cells. Epithelial-mesenchymal transition (EMT) is regarded as the beginning of invasion and metastasis and has been implicated in the metastasis of bladder cancer. We therefore postulate that RI regulates EMT of bladder cancer cells. We find that the over-expression of RI induces the up-regulation of E-cadherin, accompanied with the decreased expression of proteins associated with EMT, such as N-cadherin, Snail, Slug, vimentin and Twist and of matrix metalloprotein-2 (MMP-2), MMP-9 and Cyclin-D1, both in vitro and in vivo. The up-regulation of RI inhibits cell proliferation, migration and invasion, alters cell morphology and adhesion and leads to the rearrangement of the cytoskeleton in vitro. We also demonstrate that the up-regulation of RI can decrease the expression of integrin-linked kinase (ILK), a central component of signaling cascades controlling an array of biological processes. The over-expression of RI reduces the phosphorylation of the ILK downstream signaling targets p-Akt and p-GSK3β in T24 cells. We further find that bladder cancer with a high-metastasis capability shows higher vimentin, Snail, Slug and Twist and lower E-cadherin and RI expression in human clinical specimens. Finally, we provide evidence that the up-regulation of RI inhibits tumorigenesis and metastasis of bladder cancer in vivo. Thus, RI might play a novel role in the development of bladder cancer through regulating EMT and the ILK signaling pathway.  相似文献   

4.
Epithelial mesenchymal transition (EMT) is a complex process that involves changes in gene expression, cytoskeleton organization, cell adhesion, and extracellular matrix composition. Screening for genes mediating EMT and cancer metastasis, Waerner, Alacakaptan, and colleagues identified ILEI, a cytokine-like protein that plays an essential role in EMT, tumor growth, and late steps of metastasis.  相似文献   

5.
5-Fluorouracil (5-FU) is commonly used to treat breast cancer; however, it becomes increasingly ineffective with tumor progression. Epithelial-to-mesenchymal transition (EMT) is a process whereby cells acquire morphologic and molecular alterations facilitating tumor metastasis and progression. Emerging evidence associates chemoresistance with acquisition of EMT in cancer. However, it is not clear whether this phenomenon is involved in acquired resistance to 5-FU. Using a previously established in vitro cell model of 5-fluorouracil-resistant MCF7 cells (MCF7/5-FU), we assessed the cellular morphology, molecular changes, migration and invasion consistent with EMT. We found that silencing of Snail by stable RNA interference reversed the EMT and greatly abolished invasion behavior of MCF7/5-FU cells. We also showed that inhibition of Snail increased the sensitivity of 5-FU-resistant cells to 5-FU. Our study provided a new insight into EMT-like phenotypic changes associated with 5-FU resistance in MCF7 cells. We believed that down-regulation of Snail could be a potential novel therapeutic approach to overcoming chemoresistance and preventing metastasis during 5-FU chemotherapy.  相似文献   

6.
Zhu J  Pan X  Zhang Z  Gao J  Zhang L  Chen J 《Cellular signalling》2012,24(6):1323-1332
Integrin-linked kinase (ILK) is a multifunctional serine/threonine kinase in cytoplasm. Recent studies showed that cancer patients with increased ILK expression had low survival, poor prognosis and increased metastasis. Although the causes of ILK overexpression remain to be fully elucidated, accumulating evidence suggests that its oncogenic capacity derives from its regulation of several downstream targets that provide cells with signals that promote proliferation, survival and migration. However, the mechanisms underlying tumor metastasis by ILK is still not fully understood. Epithelial–mesenchymal transition (EMT) is a critical event of cancer cells that triggers invasion and metastasis. We recently reported that knockdown of ILK inhibited the growth and induced apoptosis in human bladder cancer cells. Therefore, we postulate that ILK might involve in EMT. Here we further investigate the function of ILK with RNA interference in bladder cancer cells. Knockdown of ILK impeded an EMT with low Vimentin, Snail, Slug and Twist as well as high E-cadherin expression in vivo and vitro. In addition, we found that knockdown of ILK inhibited cell proliferation, migration and invasion as well as changed cell morphology, adhesion and rearranged cytoskeleton in vitro. We also demonstrated that ILK siRNA inhibited phosphorylation of downstream signaling targets Akt and GSK3β, increased expression of nm23-H1, as well as reduced expression of MMP-2 and MMP-9 in vivo and vitro. Furthermore, downregulation of ILK could increase expression of Ribonuclease inhibitor (RI), an important acidic cytoplasmic protein with many functions. Finally, the effects of ILK siRNA on bladder cancer cell phenotype and invasiveness translate into suppression for tumorigenesis and metastasis in vivo. Taken together, our findings highlight that ILK signaling pathway plays a novel role in the development of bladder cancer through regulating EMT. ILK could be a promising diagnostic marker and therapeutic target for bladder cancer.  相似文献   

7.
8.
Human ribonuclease inhibitor (RI) is a cytoplasmic acidic protein. RI is constructed almost entirely of leucine rich repeats, which might be involved in unknown biological effects except inhibiting RNase A and angiogenin activities. We previously reported that up-regulating RI inhibited the growth and metastasis of melanoma cells. Epithelial-mesenchymal transition (EMT) is a critical event of cancer cells that triggers invasion and metastasis. However, the role of RI in the EMT process remains unknown. Here we hypothesize that RI might inhibit melanoma invasion and metastasis by regulating EMT. We found that over-expression of RI induced up-regulation of E-cadherin, accompanied with decreased expressions of proteins associated with EMT such as N-cadherin, Snail, Slug, Vimentin and Twist both in vitro and in vivo. Furthermore, RI restrained matrix metalloproteinase MMP-2 and MMP-9 secretions in B16 and B16-F10 melanoma cells. In addition, we also found that up-regulation of RI inhibited cell proliferation, migration and invasion as well as changed cell morphology, adhesion and rearranged cytoskeleton in vitro. Finally, the effects of RI on phenotype and invasiveness translated into suppressing metastasis by the experimental metastasis models of melanoma with lighter lung weight, a fewer metastasis nodules and a lower incidence rate, with respect to the control groups. Taken together, our data highlight, for the first time, that RI plays a novel role in inhibiting development and progression of murine melanoma cells through regulating EMT. These results suggest that RI could be a therapeutic target protein for melanoma and may be of biological importance.  相似文献   

9.
Epithelial-mesenchymal transition (EMT) is a crucial event for cancer progression and metastasis. Metastasis suppressor protein 1 (MTSS1) is a metastasis suppressor in several cancers. In this study, we elucidated the potential physiological function of MTSS1 in the invasion and migration of gastric cancer (GC), and its distinct role in EMT and subsequently determined the potential molecular mechanism. We observed that MTSS1 expression was downregulated in GC tissues and several GC cell lines (SGC-7901, MGC-803, MKN-28, MKN-45, and BGC-823). Importantly, forced expression of MTSS1 drastically diminished the cell viability in both SGC-7901 and MKN-45 cells. Moreover, overexpression of MTSS1 attenuated the invasion ability of these two cell lines. In addition to the invasive capability, introduction of MTSS1 led to a loss of migratory potential. Furthermore, augmentation of MTSS1 exhibited the typical EMT phenotype switch, accompanied by enhanced the expression of vimentin and N-cadherin and reduced E-cadherin expression. Interestingly, MTSS1 also repressed transforming growth factor beta 1 (TGF-β1)-induced EMT. Our mechanistic investigations revealed that MTSS1 was positively regulated by the phosphatase and tensin homolog (PTEN), and it functioned as a tumor suppressor, possibly by inactivating the phosphoinositide 3-kinase (PI3K)/v-akt murine thymoma viral oncogene (AKT) pathway in GC cells. Collectively, our data provide insight into an important role for MTSS1 in suppressing tumor cell invasion, migration and EMT, which indicates that MTSS1 may act as a prospective prognostic biological marker and a promising therapeutic target for GC.  相似文献   

10.
Lung cancer is a highly malignant carcinoma, and most deaths of lung cancer are caused by metastasis. The alterations associated with epithelial-to-mesenchymal transition (EMT) may be related to the cancer cell metastasis. Nevertheless, the mechanism of lung cancer metastasis remains unclear. We conducted a study in vitro to investigate whether transforming growth factor-β1 (TGF-β1) could induce changes of, such as cell morphology, expression of relative protein markers, and cellular motile and invasive activities. In this research, the changes of cell morphology were first investigated under a phase contrast microscope, then western blotting was employed to detect the expression of E-cadherin, vimentin, and fibronectin, and finally cell motility and invasion were evaluated by cell wound-healing as well as invasion assays. The data indicated that human lung adenocarcinoma cell lines, A-549 and PC-9 cells of epithelial cell characteristics, were induced to undergo EMT by TGF-β1. Following TGF-β1 treatment, cells showed dramatic morphological changes assessed by phase contrast microscopy, accompanied by decreased epithelial marker E-cadherin and increased mesenchymal markers vimentin and fibronectin. More importantly, cell motility and invasion were also enhanced in the EMT process. These results indicated that TGF-β1 may promote lung adenocarcinoma invasion and metastasis via the mechanism of EMT.  相似文献   

11.
Epithelial-to-mesenchymal transition (EMT) is an essential embryogenic and developmental process, characterized by altered cellular morphology, loss of cell adhesion, and gain of migratory ability. Dysregulation of this process has been implicated in tumorigenesis, mediating the acquisition of migratory and invasive phenotypes by tumor cells. Mammary epithelial cells provide an excellent model in which to study the process, being derived from mammary gland tissue that utilizes EMT to facilitate branching morphogenesis through which the developing gland migrates into and invades the fat pad. Inappropriate EMT has been heavily implicated in the progression of ductal hyperplasia and mammary tumor metastasis. We examined the morphological and molecular changes of three murine mammary epithelial cell lines following EMT induction. EMT was induced in the EpH-4 and NMuMG cell lines by transforming growth factor (TGF)-beta1 but not by ethanol, while the KIM-2 cell line was partially resistant to TGF-beta1 but responded fully to ethanol. The response to EMT-inducing reagent was shown to be critically dependent on the time of treatment, with confluent cells failing to respond. Timelapse photography identified increased motility during wound healing in cells pre-treated with EMT-inducing reagent compared with untreated controls. Furthermore, EMT conferred resistance to UV-induced apoptosis. Our data indicate that evaluation of characteristics other than loss and gain of phenotypic markers may be of benefit when assessing EMT, and contribute to the evidence suggesting that inappropriate EMT facilitates the acquisition of resistance to apoptosis, a key characteristic required for tumor survival.  相似文献   

12.
13.
The epithelial–mesenchymal transition (EMT) occurs commonly during carcinoma invasion and metastasis, but not during early tumorigenesis. Microarray data demonstrated elevation of vimentin, a mesenchymal marker, in intestinal adenomas from Apc Min/+ (Min) mice. We have tested the involvement of EMT in early tumorigenesis in mammalian intestines by following EMT-associated markers. Elevated vimentin RNA expression and protein production were detected within neoplastic cells in murine intestinal adenomas. Similarly, vimentin protein was detected in both adenomas and invasive adenocarcinomas of the human colon, but not in the normal colonic epithelium or in hyperplastic polyps. Expression of E-cadherin varied inversely with vimentin. In addition, the expression of fibronectin was elevated while that of E-cadherin decreased. Canonical E-cadherin suppressors, such as Snail, were not elevated in the same tumor. Elevated vimentin expression in the adenoma was not correlated with persistent Ras signaling, but was strongly correlated with reduced proliferation indices, active Wnt signaling, and TGF-β signaling, as demonstrated by its dependence on Smad3. We designate our observations of expression of only some of the canonical features of EMT as “truncated EMT”. These unexpected observations are interpreted as reflecting the involvement of a core of the EMT system during the tissue remodeling of early tumorigenesis.  相似文献   

14.
The microRNA-200 (miR-200) family is part of a gene expression signature that predicts poor prognosis in lung cancer patients. In a mouse model of K-ras/p53-mutant lung adenocarcinoma, miR-200 levels are suppressed in metastasis-prone tumor cells, and forced miR-200 expression inhibits tumor growth and metastasis, but the miR-200 target genes that drive lung tumorigenesis have not been fully elucidated. Here, we scanned the genome for putative miR-200 binding sites and found them in the 3'-untranslated region (3'-UTR) of 35 genes that are amplified in human cancer. Mining of a database of resected human lung adenocarcinomas revealed that the levels of one of these genes, Flt1/VEGFR1, correlate inversely with duration of survival. Forced miR-200 expression suppressed Flt1 levels in metastasis-prone lung adenocarcinoma cells derived from K-ras/p53-mutant mice, and negatively regulated the Flt1 3'-UTR in reporter assays. Cancer-associated fibroblasts (CAFs) isolated from murine lung adenocarcinomas secreted abundant VEGF and enhanced tumor cell invasion in coculture studies. CAF-induced tumor cell invasion was abrogated by VEGF neutralization or Flt1 knockdown in tumor cells. Flt1 knockdown decreased the growth and metastasis of tumor cells in syngeneic mice. We conclude that miR-200 suppresses lung tumorigenesis by targeting Flt1.  相似文献   

15.
16.
14-3-3σ is a potential tumor suppressor, and loss of 14-3-3σ expression plays an important role in carcinogenesis and metastasis. To explore the possible mechanism of 14-3-3σ in nasopharyngeal carcinoma (NPC) invasion and metastasis, targeted proteomic analysis was performed on 14-3-3σ-associated proteins from NPC cells. As the results, 112 proteins associated with 14-3-3σ were identified, and four 14-3-3σ-interacted proteins: keratin 8, epidermal growth factor receptor (EGFR), small GTP-binding protein RAB7, and p53 were confirmed by coimmunoprecipitation and Western blot analysis. The 14-3-3σ-associated proteins could be grouped into eight clusters based on their molecule functions. Protein–protein interaction (PPI) analysis indicated that 14-3-3σ/EGFR/keratin 8 interactions may be involved in the invasion and metastasis of NPC. 14-3-3σ/EGFR/keratin 8 could form complexes in NPC cells. 14-3-3σ downregulation in NPC may lead to the overexpression of EGFR and keratin 8, which increases the invasion ability of NPC cells possibly by activating the downstream signal molecules and reorganizing cytoskeleton. The data suggest that the biological functions of 14-3-3σ in NPC are diversified, and 14-3-3σ could inhibit the in vitro invasive ability of NPC cells possibly through 14-3-3σ/EGFR/keratin 8 interaction.  相似文献   

17.
Epithelial-mesenchymal transition (EMT) is a crucial event in tumor invasion and metastasis. However, most of past EMT studies have been conducted in the conventional two-dimensional (2D) monolayer culture. Therefore, it remains unclear what invasive phenotypes are acquired by EMT-induced cancer cells. To address this point, we attempted to characterize EMT cells in more physiological, three-dimensional (3D) collagen gel culture. EMT was induced by treating three human carcinoma cell lines (A549, Panc-1 and MKN-1) with TGF-ß. The TGF-ß treatment stimulated these cells to overexpress the invasion markers laminin γ2 and MT1-MMP in 2D culture, in addition to the induction of well-known morphological change and EMT marker expression. EMT induction enhanced cell motility and adhesiveness to fibronectin and collagen in 2D culture. Although EMT cells showed comparable cell growth to control cells in 2D culture, their growth rates were extremely suppressed in soft agar and collagen gel cultures. Most characteristically, EMT-induced cancer cells commonly and markedly extended invasive protrusions in collagen gel. These protrusions were mainly supported by microtubules rather than actin cytoskeleton. Snail-introduced, stable EMT cells showed similar protrusions in 3D conditions without TGF-ß. Moreover, these protrusions were suppressed by colchicine or inhibitors of heat shock protein 90 (HSP-90) and protein phosphatase 2A. However, MMP inhibitors did not suppress the protrusion formation. These data suggest that EMT enhances tumor cell infiltration into interstitial stroma by extending microtubule-based protrusions and suppressing cell growth. The elevated cell adhesion to fibronectin and collagen and high cell motility also seem important for the tumor invasion.  相似文献   

18.
19.
上皮-间质转化(epithelial-mesenchymal transitions,EMT)是上皮细胞向间质细胞转化的现象,不仅参与胚胎发育和正常生理,还参与许多病理过程。同样EMT也参与肿瘤的发生与发展,尤其在促进肿瘤侵袭转移中发挥着重要作用。研究表明,肿瘤细胞借助EMT方式增强肿瘤细胞迁移和运动能力,促进肿瘤的侵袭与转移。在肿瘤侵袭转移历程中,关于EMT发生的分子调控机制研究已取得了良好的进展,但其详细机制仍然不是十分清楚。本文主要介绍生长因子、转录因子、miRNAs、甲基化及其他调控因子在肿瘤EMT中的调控功能,进一步综述EMT在肿瘤侵袭转移中的作用。  相似文献   

20.

Background

Metastasis is an important step in tumor progression leading to a disseminated and often incurable disease. First steps of metastasis include down-regulation of cell adhesion molecules, alteration of cell polarity and reorganization of cytoskeleton, modifications associated with enhanced migratory properties and resistance of tumor cells to anoikis. Such modifications resemble Epithelial to Mesenchymal Transition (EMT). In breast cancer CD146 expression is associated with poor prognosis and enhanced motility.

Methodology/Principal Findings

On 4 different human breast cancer cell lines, we modified CD146 expression either with shRNA technology in CD146 positive cells or with stable transfection of CD146 in negative cells. Modifications in morphology, growth and migration were evaluated. Using Q-RT-PCR, we analyzed the expression of different EMT markers. We demonstrate that high levels of CD146 are associated with loss of cell-cell contacts, expression of EMT markers, increased cell motility and increased resistance to doxorubicin or docetaxel. Experimental modulation of CD146 expression induces changes consistent with the above described characteristics: morphology, motility, growth in anchorage independent conditions and Slug mRNA variations are strictly correlated with CD146 expression. These changes are associated with modifications of ER (estrogen receptor) and Erb receptors and are enhanced by simultaneous and opposite modulation of JAM-A, or exposure to heregulin, an erb-B4 ligand.

Conclusions

CD146 expression is associated with an EMT phenotype. Several molecules are affected by CD146 expression: direct or indirect signaling contributes to EMT by increasing Slug expression. CD146 may also interact with Erb signaling by modifying cell surface expression of ErbB3 and ErbB4 and increased resistance to chemotherapy. Antagonistic effects of JAM-A, a tight junction-associated protein, on CD146 promigratory effects underline the complexity of the adhesion molecules network in tumor cell migration and metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号