首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several specific lipids of the cell envelope are implicated in the pathogenesis of M. tuberculosis (Mtb), including phthiocerol dimycocerosates (DIM) that have clearly been identified as virulence factors. Others, such as trehalose‐derived lipids, sulfolipids (SL), diacyltrehaloses (DAT) and polyacyltrehaloses (PAT), are believed to be essential for Mtb virulence, but the details of their role remain unclear. We therefore investigated the respective contribution of DIM, DAT/PAT and SL to tuberculosis by studying a collection of mutants, each with impaired production of one or several lipids. We confirmed that among those with a single lipid deficiency, only strains lacking DIM were affected in their replication in lungs and spleen of mice in comparison to the WT Mtb strain. We found also that the additional loss of DAT/PAT, and to a lesser extent of SL, increased the attenuated phenotype of the DIM‐less mutant. Importantly, the loss of DAT/PAT and SL in a DIM‐less background also affected Mtb growth in human monocyte‐derived macrophages (hMDMs). Fluorescence microscopy revealed that mutants lacking DIM or DAT/PAT were localized in an acid compartment and that bafilomycin A1, an inhibitor of phagosome acidification, rescued the growth defect of these mutants. These findings provide evidence for DIM being dominant virulence factors that mask the functions of lipids of other families, notably DAT/PAT and to a lesser extent of SL, which we showed for the first time to contribute to Mtb virulence.  相似文献   

2.
A number of species-specific polymethyl-branched fatty acid-containing trehalose esters populate the outer membrane of Mycobacterium tuberculosis. Among them, 2,3-diacyltrehaloses (DAT) and penta-acyltrehaloses (PAT) not only play a structural role in the cell envelope but also contribute to the ability of M. tuberculosis to multiply and persist in the infected host, promoting the intracellular survival of the bacterium and modulating host immune responses. The nature of the machinery, topology, and sequential order of the reactions leading to the biosynthesis, assembly, and export of these complex glycolipids to the cell surface are the object of the present study. Our genetic and biochemical evidence corroborates a model wherein the biosynthesis and translocation of DAT and PAT to the periplasmic space are coupled and topologically split across the plasma membrane. The formation of DAT occurs on the cytosolic face of the plasma membrane through the action of PapA3, FadD21, and Pks3/4; that of PAT occurs on the periplasmic face via transesterification reactions between DAT substrates catalyzed by the acyltransferase Chp2 (Rv1184c). The integral membrane transporter MmpL10 is essential for DAT to reach the cell surface, and its presence in the membrane is required for Chp2 to be active. Disruption of mmpL10 or chp2 leads to an important build-up of DAT inside the cells and to the formation of a novel form of unsulfated acyltrehalose esterified with polymethyl-branched fatty acids normally found in sulfolipids that is translocated to the cell surface.  相似文献   

3.
Trehalose glycolipids are found in many bacteria in the suborder Corynebacterineae, but methyl-branched acyltrehaloses are exclusive to virulent species such as the human pathogen Mycobacterium tuberculosis. In M. tuberculosis, the acyltransferase PapA3 catalyzes the formation of diacyltrehalose (DAT), but the enzymes responsible for downstream reactions leading to the final product, polyacyltrehalose (PAT), have not been identified. The PAT biosynthetic gene locus is similar to that of another trehalose glycolipid, sulfolipid 1. Recently, Chp1 was characterized as the terminal acyltransferase in sulfolipid 1 biosynthesis. Here we provide evidence that the homologue Chp2 (Rv1184c) is essential for the final steps of PAT biosynthesis. Disruption of chp2 led to the loss of PAT and a novel tetraacyltrehalose species, TetraAT, as well as the accumulation of DAT, implicating Chp2 as an acyltransferase downstream of PapA3. Disruption of the putative lipid transporter MmpL10 resulted in a similar phenotype. Chp2 activity thus appears to be regulated by MmpL10 in a relationship similar to that between Chp1 and MmpL8 in sulfolipid 1 biosynthesis. Chp2 is localized to the cell envelope fraction, consistent with its role in DAT modification and possible regulatory interactions with MmpL10. Labeling of purified Chp2 by an activity-based probe was dependent on the presence of the predicted catalytic residue Ser141 and was inhibited by the lipase inhibitor tetrahydrolipstatin (THL). THL treatment of M. tuberculosis resulted in selective inhibition of Chp2 over PapA3, confirming Chp2 as a member of the serine hydrolase superfamily. Efforts to produce in vitro reconstitution of acyltransferase activity using straight-chain analogues were unsuccessful, suggesting that Chp2 has specificity for native methyl-branched substrates.  相似文献   

4.
5.
6.
7.

Background

Mycobacterium tuberculosis (Mtb) infection may cause overt disease or remain latent. Interferon gamma release assays (IGRAs) detect Mtb infection, both latent infection and infection manifesting as overt disease, by measuring whole-blood interferon gamma (IFN-γ) responses to Mtb antigens such as early secreted antigenic target-6 (ESAT-6), culture filtrate protein 10 (CFP-10), and TB7.7. Due to a lack of adequate diagnostic standards for confirming latent Mtb infection, IGRA sensitivity for detecting Mtb infection has been estimated using patients with culture-confirmed tuberculosis (CCTB) for whom recovery of Mtb confirms the infection. In this study, cytokines in addition to IFN-γ were assessed for potential to provide robust measures of Mtb infection.

Methods

Cytokine responses to ESAT-6, CFP-10, TB7.7, or combinations of these Mtb antigens, for patients with CCTB were compared with responses for subjects at low risk for Mtb infection (controls). Three different multiplexed immunoassays were used to measure concentrations of 9 to 20 different cytokines. Responses were calculated by subtracting background cytokine concentrations from cytokine concentrations in plasma from blood stimulated with Mtb antigens.

Results

Two assays demonstrated that ESAT-6, CFP-10, ESAT-6+CFP-10, and ESAT-6+CFP-10+TB7.7 stimulated the release of significantly greater amounts of IFN-γ, IL-2, IL-8, MCP-1 and MIP-1β for CCTB patients than for controls. Responses to combination antigens were, or tended to be, greater than responses to individual antigens. A third assay, using whole blood stimulation with ESAT-6+CFP-10+TB7.7, revealed significantly greater IFN-γ, IL-2, IL-6, IL-8, IP-10, MCP-1, MIP-1β, and TNF-α responses among patients compared with controls. One CCTB patient with a falsely negative IFN-γ response had elevated responses with other cytokines.

Conclusions

Multiple cytokines are released when whole blood from patients with CCTB is stimulated with Mtb antigens. Measurement of multiple cytokine responses may improve diagnostic sensitivity for Mtb infection compared with assessment of IFN-γ alone.  相似文献   

8.
BackgroundRegulatory T cells (Tregs) play a critical role during Mycobacterium tuberculosis (Mtb) infection, modulating host responses while neutralizing excessive inflammation. However, their impact on regulating host protective immunity is not completely understood. Here, we demonstrate that Treg cells abrogate the in vitro microbicidal activity against Mtb.MethodsWe evaluated the in vitro microbicidal activity of peripheral blood mononuclear cells (PBMCs) from patients with active tuberculosis (TB), individuals with latent tuberculosis infection (LTBI, TST+/IGRA+) and healthy control (HC, TST-/IGRA-) volunteers. PBMCs, depleted or not of CD4+CD25+ T-cells, were analyzed to determine frequency and influence on microbicidal activity during in vitro Mtb infection with four clinical isolates (S1, S5, R3, and R6) and one reference strain (H37Rv).ResultsThe frequency of CD4+CD25highFoxP3+ cells were significantly higher in Mtb infected whole blood cultures from both TB patients and LTBI individuals when compared to HC. Data from CD4+CD25+ T-cells depletion demonstrate that increase of CD4+CD25highFoxP3+ is associated with an impairment of Th-1 responses and a diminished in vitro microbicidal activity of LTBI and TB groups.ConclusionsTregs restrict host anti-mycobacterial immunity during active disease and latent infection and thereby may contribute to both disease progression and pathogen persistence.  相似文献   

9.
Interferon-gamma release assays (IGRAs) have proven to be useful to accurately detect Mycobacterium tuberculosis (Mtb) infection, but they cannot reliably discriminate between active tuberculosis (TB) and latent tuberculosis infection (LTBI). This study aims to test whether Mtb-specific tumor necrosis factor-alpha (TNF-α) could be used as a new tool for the rapid diagnosis of active TB disease. The secretion of TNF-α by Mtb-specific antigen-stimulated peripheral blood mononuclear cells (PBMCs) of sixty seven participants was investigated in the study. Our results showed that the total measurement of TNF-α secretion by Mtb-specific antigen-stimulated PBMCs is not a good biomarker for active TB diagnosis. However, we found that calculation of Mtb-specific TNF-α not only distinguish between active and latent TB infection, but also can differentiate active TB from non-TB patients. Using the cutoff value of 136.9 pg/ml for Mtb-specific TNF-α, we were able to differentiate active TB from LTBI. Sensitivity and specificity were 72% and 90.91%. These data suggest that Mtb-specific TNF-α could be a potential biomarker for the diagnosis of active TB disease.  相似文献   

10.
The biosynthetic pathways of amino acids are attractive targets for drug development against pathogens with an intracellular behavior like M. tuberculosis (Mtb). Indeed, while in the macrophages Mtb has restricted access to amino acids such as tryptophan (Trp). Auxotrophic Mtb strains, with mutations in the Trp biosynthetic pathway, showed reduced intracellular survival in cultured human and murine macrophages and failed to cause the disease in immunocompetent and immunocompromised mice. Herein we present recent efforts in the discovery of Trp biosynthesis inhibitors.  相似文献   

11.
12.
Phthiocerol dimycocerosates (DIM) are major virulence factors of Mycobacterium tuberculosis (Mtb), in particular during the early step of infection when bacilli encounter their host macrophages. However, their cellular and molecular mechanisms of action remain unknown. Using Mtb mutants deleted for genes involved in DIM biosynthesis, we demonstrated that DIM participate both in the receptor-dependent phagocytosis of Mtb and the prevention of phagosomal acidification. The effects of DIM required a state of the membrane fluidity as demonstrated by experiments conducted with cholesterol-depleting drugs that abolished the differences in phagocytosis efficiency and phagosome acidification observed between wild-type and mutant strains. The insertion of a new cholesterol-pyrene probe in living cells demonstrated that the polarity of the membrane hydrophobic core changed upon contact with Mtb whereas the lateral diffusion of cholesterol was unaffected. This effect was dependent on DIM and was consistent with the effect observed following DIM insertion in model membrane. Therefore, we propose that DIM control the invasion of macrophages by Mtb by targeting lipid organisation in the host membrane, thereby modifying its biophysical properties. The DIM-induced changes in lipid ordering favour the efficiency of receptor-mediated phagocytosis of Mtb and contribute to the control of phagosomal pH driving bacilli in a protective niche.  相似文献   

13.
14.
Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection.  相似文献   

15.
The metabolic events associated with maintaining redox homeostasis in Mycobacterium tuberculosis (Mtb) during infection are poorly understood. Here, we discovered a novel redox switching mechanism by which Mtb WhiB3 under defined oxidizing and reducing conditions differentially modulates the assimilation of propionate into the complex virulence polyketides polyacyltrehaloses (PAT), sulfolipids (SL-1), phthiocerol dimycocerosates (PDIM), and the storage lipid triacylglycerol (TAG) that is under control of the DosR/S/T dormancy system. We developed an in vivo radio-labeling technique and demonstrated for the first time the lipid profile changes of Mtb residing in macrophages, and identified WhiB3 as a physiological regulator of virulence lipid anabolism. Importantly, MtbΔwhiB3 shows enhanced growth on medium containing toxic levels of propionate, thereby implicating WhiB3 in detoxifying excess propionate. Strikingly, the accumulation of reducing equivalents in MtbΔwhiB3 isolated from macrophages suggests that WhiB3 maintains intracellular redox homeostasis upon infection, and that intrabacterial lipid anabolism functions as a reductant sink. MtbΔwhiB3 infected macrophages produce higher levels of pro- and anti-inflammatory cytokines, indicating that WhiB3-mediated regulation of lipids is required for controlling the innate immune response. Lastly, WhiB3 binds to pks2 and pks3 promoter DNA independent of the presence or redox state of its [4Fe-4S] cluster. Interestingly, reduction of the apo-WhiB3 Cys thiols abolished DNA binding, whereas oxidation stimulated DNA binding. These results confirmed that WhiB3 DNA binding is reversibly regulated by a thiol-disulfide redox switch. These results introduce a new paradigmatic mechanism that describes how WhiB3 facilitates metabolic switching to fatty acids by regulating Mtb lipid anabolism in response to oxido-reductive stress associated with infection, for maintaining redox balance. The link between the WhiB3 virulence pathway and DosR/S/T signaling pathway conceptually advances our understanding of the metabolic adaptation and redox-based signaling events exploited by Mtb to maintain long-term persistence.  相似文献   

16.
Novel vaccines are needed to control tuberculosis (TB), the bacterial infectious disease that together with malaria and HIV is worldwide responsible for high levels of morbidity and mortality. TB can result from the reactivation of an initially controlled latent infection by Mycobacterium tuberculosis (Mtb). Mtb proteins for which a possible role in this reactivation process has been hypothesized are the five homologs of the resuscitation-promoting factor of Micrococcus luteus, namely Mtb Rv0867c (rpfA), Rv1009 (rpfB), Rv1884c (rpfC), Rv2389c (rpfD) and Rv2450c (rpfE). Analysis of the immune recognition of these 5 proteins following Mtb infection or Mycobacterium bovis BCG vaccination of mice showed that Rv1009 (rpfB) and Rv2389c (rpfD) are the most antigenic in the tested models. We therefore selected rpfB and rpfD for testing their vaccine potential as plasmid DNA vaccines. Elevated cellular immune responses and modest but significant protection against intra-tracheal Mtb challenge were induced by immunization with the rpfB encoding DNA vaccine. The results indicate that rpfB is the most promising candidate of the five rpf-like proteins of Mtb in terms of its immunogenicity and protective efficacy and warrants further analysis for inclusion as an antigen in novel TB vaccines.  相似文献   

17.
18.
19.
Magnotta M  Murata J  Chen J  De Luca V 《Phytochemistry》2007,68(14):1922-1931
Madagascar periwinkle [Catharanthus roseus (L.) G Don] is a pantropical plant of horticultural value that produces the powerful anticancer drugs vinblastine and vincristine that are derived from the dimerization of the monoterpenoid indole alkaloids (MIAs), vindoline and catharanthine. The present study describes the genetic engineering and expression of the terminal step of vindoline biosynthesis, deacetylvindoline-4-O-acetyltransferase (DAT) in Catharanthus roseus hairy root cultures. Biochemical analyses showed that several hairy root lines expressed high levels of DAT enzyme activity compared to control hairy root cultures expressing β-gulucuronidase activity (GUS) activity. Metabolite analysis using high performance liquid chromotagraphy established that hairy root extracts had an altered alkaloid profile with respect to hörhammericine accumulation in DAT expressing lines in comparison to control lines. Further analyses of one hairy root culture expressing high DAT activity suggested that DAT expression and accumulation of hörhammericine (9) were related. It is concluded that expression of DAT in hairy roots altered their MIA profile and suggests that further expression of vindoline pathway genes could lead to significant changes in alkaloid profiles. Evidence is provided that hörhammericine (9) accumulates via a DAT interaction with the root specific minovincinine-19-O-acetyltransferase (MAT) that inhibits the MAT mediated conversion of hörhammericine (9) into 19-O-acetyl-hörhammericine (12).  相似文献   

20.
Mycobacterium tuberculosis possesses an unusual cell wall that is replete with virulence-enhancing lipids. One cell wall molecule unique to pathogenic M. tuberculosis is polyacyltrehalose (PAT), a pentaacylated, trehalose-based glycolipid. Little is known about the biosynthesis of PAT, although its biosynthetic gene cluster has been identified and found to resemble that of the better studied M. tuberculosis cell wall component sulfolipid-1. In this study, we sought to elucidate the function of papA3, a gene from the PAT locus encoding a putative acyltransferase. To determine whether PapA3 participates in PAT assembly, we expressed the protein heterologously and evaluated its acyltransferase activity in vitro. The purified enzyme catalyzed the sequential esterification of trehalose with two palmitoyl groups, generating a diacylated product similar to the 2,3-diacyltrehalose glycolipids of M. tuberculosis. Notably, PapA3 was selective for trehalose; no activity was observed with other structurally related disaccharides. Disruption of the papA3 gene from M. tuberculosis resulted in the loss of PAT from bacterial lipid extracts. Complementation of the mutant strain restored PAT production, demonstrating that PapA3 is essential for the biosynthesis of this glycolipid in vivo. Furthermore, we determined that the PAT biosynthetic machinery has no cross-talk with that for sulfolipid-1 despite their related structures.Mycobacterium tuberculosis, the bacterium that causes tuberculosis in humans, has a complex cell wall that contains a number of unique glycolipids intimately linked to mycobacterial pathogenesis (1, 2). The biosynthesis of many of these virulence factors, including the trehalose mycolates, phenolic glycolipids, and sulfolipid-1 (SL-1),3 is largely understood (35). In contrast, relatively little is known about the biosynthesis of other prominent M. tuberculosis glycolipids, such as di-, tri-, and polyacyltrehaloses. These acyltrehaloses are located in the outer surface of the cell wall and contain di- and tri-methyl branched fatty acids that are only found in pathogenic species of mycobacteria (6, 7). Previous studies suggest a role for these glycolipids in anchoring the bacterial capsule, which impedes phagocytosis by host cells (6).The major polyacyltrehalose (PAT) of M. tuberculosis, also referred to as pentaacyl or polyphthienoyl trehalose, consists of five acyl chains, four mycolipenic (phthienoic) acids and one fully saturated fatty acid, linked to trehalose (Fig. 1A) (8). The mycolipenic acid side chains of PAT are products of the polyketide synthase gene pks3/4 (7). Disruption of pks3/4 (also referred to as msl3 (7)) abolishes PAT biosynthesis and causes cell aggregation. At present, the remaining proteins required for PAT assembly have not been characterized.Open in a separate windowFIGURE 1.PAT and SL-1 share related structures and biosynthetic gene clusters. A, structure of PAT. B, structure of SL-1. C, genomic arrangement of the PAT and SL-1 biosynthetic gene clusters.Interestingly, the PAT biosynthetic gene cluster strongly resembles that of SL-1, which is a structurally similar trehalose-based glycolipid unique to pathogenic mycobacteria (Fig. 1B) (9). Both gene clusters contain polyketide synthase (pks), acyltransferase (pap), and lipid transport (mmpL) genes in a similar genomic arrangement (Fig. 1C). The SL-1 locus encodes two acyltransferase genes, papA1 and papA2, which are required for SL-1 biosynthesis (5, 10). These proteins belong to the mycobacterium-specific polyketide-associated protein (Pap) family of acyltransferases, which share a conserved HX3DX14Y motif that is required for activity (11). The PapA2 enzyme catalyzes the esterification of the 2′-position of trehalose 2-sulfate with a saturated fatty acid. PapA1 mediates the subsequent esterification of this intermediate with a hydroxyphthioceranoyl group produced by Pks2 (5). Interestingly, the PAT locus contains a gene, Rv1182, that is homologous to both papA1 and papA2 (55 and 53% amino acid identity, respectively). This gene is annotated as papA3 in the genome and was previously shown to encode a protein bearing the signature Pap motif (11).Here we demonstrate that papA3 encodes an acyltransferase essential for the biosynthesis of PAT. Deletion of the papA3 gene resulted in loss of the glycolipid from M. tuberculosis lipid extracts, as determined by high resolution mass spectrometry. Moreover, the purified enzyme was shown to selectively and sequentially acylate trehalose in vitro, generating a diacylated product similar to the 2,3-diacyltrehaloses of M. tuberculosis. Together, these data confirm that PapA3 plays a crucial role in PAT biosynthesis and highlight its potential involvement in the biosynthesis of related M. tuberculosis acyltrehaloses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号