首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
《Journal of molecular biology》2019,431(9):1878-1888
Loss of retinal ganglion cells (RGCs) is a leading cause of blinding conditions. The purpose of this study was to evaluate the effect of extracellular l-lactate on RGC survival facilitated through lactate metabolism and ATP production. We identified lactate as a preferred energy substrate over glucose in murine RGCs and showed that lactate metabolism and consequently increased ATP production are crucial components in promoting RGC survival during energetic crisis. Lactate was released to the extracellular environment in the presence of glucose and detained intracellularly during glucose deprivation. Lactate uptake and metabolism was unaltered in the presence and absence of glucose. However, the ATP production declined significantly for 24 h of glucose deprivation and increased significantly in the presence of lactate. Finally, lactate exposure for 2 and 24 h resulted in increased RGC survival during glucose deprivation. In conclusion, the metabolic pathway of lactate in RGCs may be of great future interest to unravel potential pharmaceutical targets, ultimately leading to novel therapies in the prevention of blinding neurodegenerative diseases, for example, glaucoma.  相似文献   

2.
3.
Several reports indicate that lactate can serve as an energy substrate for the brain. The rate of oxidation of this substrate by cultured rat brain astrocytes was 3-fold higher than the rate with glucose, suggesting that lactate can serve as an energy source for these cells. Since transport into the astrocytes may play an important role in regulating nutrient use by individuals types of brain cells, we investigated the uptake ofl-[U-14C]lactate by primary cultures of rat brain astrocytes. Measurement of the net uptake suggested two carrier-mediated mechanisms and an Eadie-Hofstee type plot of the data supported this conclusion revealing 2 Km values of 0.49 and 11.38 mM and Vmax values of 16.55 and 173.84 nmol/min/mg protein, respectively. The rate of uptake was temperature dependent and was 3-fold higher at pH 6.2 than at 7.4, but was 50% less at pH 8.2. Although the lactate uptake carrier systems in astrocytes appeared to be labile when incubated in phosphate buffered saline for 20 minutes, the uptake process exhibited an accelerative exchange mechanism. In addition, lactate uptake was altered by several metabolic inhibitors and effectors. Potassium cyanide and -cyano-4-hydroxycinnamate inhibited lactate uptake, but mersalyl had little or no effect. Phenylpyruvate, -ketoisocaproate, and 3-hydroxybutyrate at 5 and 10 mM greatly attenuated the rate of lactate uptake. These results suggest that the availability of lactate as an energy source is regulated in part by a biphasic transport system in primary astrocytes.This data was presented in part at the meeting of the Federation of American Societies for Experimental Biology in May 1989.  相似文献   

4.
Apoptosis, necrosis and autophagy are mechanistically related processes that control tissue homeostasis and cell survival. In the testis, germ cell death is important for controlling sperm output, but it is unknown whether or not germ cells can switch from apoptosis to necrosis, as has been reported in other tissues. Furthermore, autophagy has not been reported in spermatogenesis. Spermatocytes (meiotic cells) and spermatids (haploid cells) use lactate rather than glucose as their primary substrate for producing ATP. The metabolism of glucose, but not lactate, reduces ATP levels and increases intracellular [H+] and [Ca2+], both of which are associated with apoptosis and/or necrosis in somatic cells. In this work, we evaluated whether different energy sources, such as lactate or glucose, can influence spermatocyte death type and/or survival in primary cultures. Spermatocytes cultured for 12 h without an energy source died by necrosis, while spermatocytes cultured with 5 mM glucose showed a significant increase in apoptosis, as evidenced by caspase activity, TUNEL assay and phosphatidylserine exposure. Apoptosis was not observed in spermatocytes cultured with 5 mM lactate or deoxyglucose. Authophagy markers, such as LC3-II and autophagosomes, were detected after 12 h of culture, regardless the culture conditions. These results suggest that the availability of glucose and/or lactate affect the type of death or the survival of primary spermatocytes, where glucose can induce apoptosis, while lactate is a protective factor.  相似文献   

5.
The review outlines current state of the thepretical, methodological and applies aspects of brain's energy homeostasis. Authors suggest reconsidering the exclusive role of glucose as an energy substrate (ES) at both neuronal and systemic levels discussing recent research data on qualitative composition of ES pool in the brain. The role of ES alternative to glucose, e.g., lactate and ketone bodies, is examined. The hypotheses of intracellular and astrocyte-neuron lactate shuttles are discussed along with the hypotheses of astrocyte-neuron shuttle of ketone bodies, the selfish brain theory and suppositions on homeostatic versus non-homeostatic ES supply chains. In conclusion, authors argue that exogenous native ES may be used for prevention and treatment of neurodegenerative diseases.  相似文献   

6.
Abstract: A successfully developed enzyme-based lactate microsensor with rapid response time allows the direct and continuous in vivo measurement of lactic acid concentration with high temporal resolution in brain extracellular fluid. The fluctuations coupled to neuronal activity in extracellular lactate concentration were explored in the dentate gyrus of the hippocampus of the rat brain after electrical stimulation of the perforant pathway. Extracellular glucose and oxygen levels were also detected simultaneously by coimplantation of a fast-response glucose sensor and an oxygen electrode, to provide novel information of trafficking of energy substances in real time related to local neuronal activity. The results first give a comprehensive picture of complementary energy supply and use of lactate and glucose in the intact brain tissue. In response to acute neuronal activation, the brain tissue shifts immediately to significant energy supply by lactate. A local temporary fuel "reservoir" is established behind the blood-brain barrier, evidenced by increased extracellular lactate concentration. The pool can be depleted rapidly, up to 28% in 10–12 s, by massive, acute neuronal use after stimulation and can be replenished in ∼20 s. Glutamate-stimulated astrocytic glycolysis and the increase of regional blood flow may regulate the lactate concentration of the pool in different time scales to maintain local energy homeostasis.  相似文献   

7.
Seven male students were studied to observe the effects of acute cold exposure (at 10°C for 60 min) on erythrocyte concentrations of glycolytic intermediates in summer and in winter. The subjects shivered slightly but frankly in both experiments. Significant decreases were observed in the concentrations of pyruvate and lactate during body cooling in summer, but not in winter. The lactate concentration remained significantly reduced 15 min after cold exposure. After 60 min of cold exposure in summer, a negative crossover point appeared to exist between phosphoenolpyruvate and pyruvate and erythrocyte pyruvate kinase activity showed a significant decrease. No seasonal difference was observed in the initial control values of the intermediates measured. From these results and the fact that glucose, pyruvate and lactate are evenly distributed between erythrocytes and plasma, it is likely that erythrocytes and skeletal muscles need less fuel substrate, glucose during cold exposure in winter than in summer, suggesting that an increased economy of energy for homeostasis is achieved.  相似文献   

8.
Lactic streptococci, classically regarded as homolactic fermenters of glucose and lactose, became heterolactic when grown with limiting carbohydrate concentrations in a chemostat. At high dilution rates (D) with excess glucose present, about 95% of the fermented sugar was converted to l-lactate. However, as D was lowered and glucose became limiting, five of the six strains tested changed to a heterolactic fermentation such that at D = 0.1 h(-1) as little as 1% of the glucose was converted to l-lactate. The products formed after this phenotypic change in fermentation pattern were formate, acetate, and ethanol. The level of lactate dehydrogenase, which is dependent upon ketohexose diphosphate for activity, decreased as fermentation became heterolactic with Streptococcus lactis ML(3). Transfer of heterolactic cells from the chemostat to buffer containing glucose resulted in the nongrowing cells converting nearly 80% of the glucose to l-lactate, indicating that fine control of enzyme activity is an important factor in the fermentation change. These nongrowing cells metabolizing glucose had elevated (ca. twofold) intracellular fructose 1,6-diphosphate concentrations ([FDP](in)) compared with those in the glucose-limited heterolactic cells in the chemostat. [FDP](in) was monitored during the change in fermentation pattern observed in the chemostat when glucose became limiting. Cells converting 95 and 1% of the glucose to l-lactate contained 25 and 10 mM [FDP](in), respectively. It is suggested that factors involved in the change to heterolactic fermentation include both [FDP](in) and the level of lactate dehydrogenase.  相似文献   

9.
10.
Ma CQ  Xu P  Dou YM  Qu YB 《Biotechnology progress》2003,19(6):1672-1676
On an industrial scale, the production of pyruvate at a high concentration from the cheaper lactate substrate is a valuable process. To produce pyruvate from lactate by whole cells, various lactate-utilizing microorganisms were isolated from soil samples. Among them, strain WLIS, identified as Acinetobacter sp., was screened as a pyruvate producer. For the pyruvate preparation from lactate, the preparative conditions were optimized with whole cells of the strain. The cells cultivated in the medium containing 100 mM of l-lactate showed the highest biotransformation efficiency from lactate to pyruvate. The optimized dry-cell concentration, pH, and temperature of reaction were 6 g/L, pH 7.0-7.5, and 30 degrees C, respectively. The influences of ethylenediaminetetraacetic acid (EDTA) and aeration on a biotransformation reaction were carried out under the test conditions. Under the optimized reaction conditions, l-lactate at concentrations of 200 and 500 mM were almost totally stoichiometrically converted into pyruvate in 8 and 12 h, respectively. About 60% of 800 mM of l-lactate was transformed into pyruvate in 24 h. This reduced conversion rate is probably due to the high substrate inhibition in biotransformation.  相似文献   

11.
Abstract: This study used the rat hippocampal slice preparation and the monocarboxylate transporter inhibitor, α-cyano-4-hydroxycinnamate (4-CIN), to assess the obligatory role that lactate plays in fueling the recovery of synaptic function after hypoxia upon reoxygenation. At a concentration of 500 µ M , 4-CIN blocked lactate-supported synaptic function in hippocampal slices under normoxic conditions in 15 min. The inhibitor had no effect on glucose-supported synaptic function. Of control hippocampal slices exposed to 10-min hypoxia, 77.8 ± 6.8% recovered synaptic function after 30-min reoxygenation. Of slices supplemented with 500 µ M 4-CIN, only 15 ± 10.9% recovered synaptic function despite the large amount of lactate formed during the hypoxic period and the abundance of glucose present before, during, and after hypoxia. These results indicate that 4-CIN, when present during hypoxia and reoxygenation, blocks lactate transport from astrocytes, where the bulk of anaerobic lactate is formed, to neurons, where lactate is being utilized aerobically to support recovery of function after hypoxia. These results unequivocally validate that brain lactate is an obligatory aerobic energy substrate for posthypoxia recovery of function.  相似文献   

12.
A tight link exists between neuronal activity and energy metabolism. This relationship was first proposed by Roy and Sherrington who suggested that brain possesses intrinsic mechanisms to regulate the availability of energy substrates in register with local variations of functional activity. This concept was later confirmed by Sokoloff and colleagues who demonstrated that increased neuronal activity led to increased glucose utilization in almost any areas of the brain tested. Despite wide acceptance of this concept, the cellular and molecular mechanisms that underlie this close relationship between neuronal activity and energy metabolism have remained largely unknown. The extensive analysis carried out by our group will be discussed. Astrocytes appear to be the key cells that operate the coupling between synaptic activity and glucose utilization. Indeed both in vitro and in vivo evidences indicate that astrocytes can detect synaptically released glutamate through sodium-coupled uptake operated by glutamate transporters. Disruption of sodium homeostasis activates the energy-demanding Na-K-ATPase which promotes glucose uptake and lactate production. Relevance of these findings to functional brain imaging will be discussed.  相似文献   

13.
Lactate is a major energy source for the brain, especially when glucose is not available in sufficient amounts. In the present study, we administered sodium l-lactate (250 mg/kg) to mice before or after middle cerebral artery occlusion (MCAO) to test whether lactate can be neuroprotective in brain ischemia. Permanent ischemia for 24 h caused a large hemispheric lesion and a severe loss of body weight. Administration of lactate shortly (15–30 min) before MCAO strongly reduced cell death and weight loss, but only when isoflurane was used for anesthesia. Under pentobarbital anesthesia, lactate was inactive. After transient ischemia, when isoflurane or ketamine–xylazine were used as anesthetic drugs, lactate was effective when given immediately after reperfusion. In separate experiments, we found that plasma lactate levels are also strongly influenced by anesthetic drugs. Thus, isoflurane anesthesia as well as lactate administration caused strongly increased plasma levels of lactate whereas pentobarbital anesthesia significantly reduced plasma lactate. We conclude that exogenous lactate is neuroprotective in an in vivo-model of brain ischemia, but that its action is strongly influenced by the type of anesthetic agent used.  相似文献   

14.
Hypoxia is a critical event for higher organisms, and cells and tissues react by increasing the oxygen supply by vasodilatation, angiogenesis, and erythropoiesis and maintaining cellular energy by increasing glycolysis and inhibiting anabolic pathways. Stimulation of glycolysis has been regarded as the main response that increases energy production during hypoxia; however, there is an obvious conflict during ischemia, because both the oxygen and glucose supply are insufficient. In this study, we found that exposure of HepG2 cells and normal fibroblasts to hypoxia induces cellular tolerance to glucose starvation. The tolerance induced by hypoxia is dependent on several amino acids, indicating a switch from glucose to amino acids as the energy source. When antisense RNA expression vector for 5'-AMP-activated protein kinase or protein kinase B/Akt was transfected into HepG2 cells, the induction of tolerance to glucose was greatly inhibited, indicating that the tolerance was dependent on 5'-AMP-activated protein kinase and protein kinase B/Akt. Similar tolerance was induced by nitric oxide exposure. The tolerance induced was observed in various cells and may represent a previously unknown physiological response related to hypoxia-preconditioning and tumor progression:austerity.  相似文献   

15.
A tight link exists between neuronal activity and energy metabolism. This relationship was first proposed by Roy and Sherrington who suggested that brain possesses intrinsic mechanisms to regulate the availability of energy substrates in register with local variations of functional activity. This concept was later confirmed by Sokoloff and colleagues who demonstrated that increased neuronal activity led to increased glucose utilization in almost any areas of the brain tested. Despite wide acceptance of this concept, the cellular and molecular mechanisms that underlie this close relationship between neuronal activity and energy metabolism have remained largely unknown. The extensive analysis carried out by our group will be discussed. Astrocytes appear to be the key cells that operate the coupling between synaptic activity and glucose utilization. Indeed both in vitro and in vivo evidences indicate that astrocytes can detect synaptically released glutamate through sodium‐coupled uptake operated by glutamate transporters. Disruption of sodium homeostasis activates the energy‐demanding Na‐K‐ATPase which promotes glucose uptake and lactate production. Relevance of these findings to functional brain imaging will be discussed.  相似文献   

16.
Glucose, lactate and pyruvate efflux by the perfused liver of the walking catfish, Clarias batrachus was studied during aniso-osmotic exposure. During hypo-osmotic exposure (−80 mOsmol l−1, maintained with NaCl), glucose, lactate and pyruvate efflux by the perfused liver significantly decreased by 55, 19 and 16%, respectively. During hyper-osmotic exposure (+80 mOsmol l−1, maintained with NaCl), efflux increased by 57, 12 and 18%, respectively. Similar effects of glucose, lactate and pyruvate efflux by the perfused liver was also seen when the anisotonicity of the medium was adjusted with mannitol instead of NaCl. The decrease of glucose, lactate and pyruvate efflux during hypo-osmotic exposure was correlated with the stimulation of glycogen synthesis and the reverse was true during hyper-osmotic exposure. These observations were supported by changes in glycogen phosphorylase a (GPase a) and glycogen synthase a (GSase a) activities. During hypo-osmotic exposure (−80 mOsmol l−1), the GPase a activity decreased by 1.93 fold and GSase a activity increased by 1.63 fold, while during hyper-osmotic exposure (+80 mOsmol l−1), the GPase a activity increased by 1.58 fold and GSase a activity decreased by 1.95 fold. The total activity of both the enzymes were not effected by a short term exposure to aniso-osmotic conditions, suggesting that the alterations in GPase a and GSase a activity were mainly due to changes of their phosphorylation status during aniso-osmotic exposure. A direct correlation exists between glucose efflux and the hydration status of the perfused liver. These alterations of glucose metabolism are probably necessary by this walking catfish to meet the different energy demand, and also for maintenance of glucose homeostasis under osmotic stress.  相似文献   

17.
Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain''s capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models.  相似文献   

18.
The ATP content of pachytene spermatocytes and round spermatids, isolated from rat testes, was not maintained during incubation of the germ cells in the presence of glucose. Glucose was metabolized via glycolysis at a considerable rate, but the rate of oxidation of the resulting endogenous pyruvate in the mitochondria was too low to support fully ATP production. Exogenous pyruvate (0.25 mM) or exogenous l-lactate (3–6 mM), however, were effective energy substrates. The lactate dehydrogenase reaction in isolated germ cells favoured the rapid conversion of pyruvate to lactate, at the expense of reducing equivalents from mitochondrial NADH. Hence, to support ATP production by the germ cells via mitochondrial metabolism of endogenous pyruvate, a relatively high concentration of exogenous lactate may be essential. In the spermatogenic microenvironment in vivo, such high concentrations of lactate could result from the net production of lactate by Sertoli cells. The mitochondria of the isolated germ cells produced ATP probably at a close to maximal rate, and spermatogenesis therefore may be extremely sensitive to compounds which interfere with mitochondrial energy metabolism and respiratory control.  相似文献   

19.
Cell-to-cell metabolic interactions are crucial for the functioning of the nervous system and depend on the differential expression of glucose transporters (GLUTs) and monocarboxylate transporters (MCTs). The olfactory receptor neurons (ORNs) and supporting cells (SCs) of the olfactory epithelium exhibit a marked polarization and a tight morphological interrelationship, suggesting an active metabolic interaction. We examined the expression and localization of MCTs and GLUTs in the olfactory mucosa and found a stereotyped pattern of expression. ORNs exhibited GLUT1 labeling in soma, dendrites, and axon. SCs displayed GLUT1 labeling throughout their cell length, whereas MCT1 and GLUT3 localize to their apical portion, possibly including the microvilli. Additionally, GLUT1 and MCT1 were detected in endothelial cells and GLUT1, GLUT3, and MCT2 in the cells of the Bowman's gland. Our observations suggest an energetic coupling between SCs and Bowman's gland cells, where glucose crossing the blood-mucosa barrier through GLUT1 is incorporated by these epithelial cells. Once in the SCs, glucose can be metabolized to lactate, which could be transported by MCTs into the Bowman's gland duct, where it can be used as metabolic fuel. Furthermore, SCs may export glucose and lactate to the mucous layer, where they may serve as possible energy supply to the cilia.  相似文献   

20.
一直以来,乳酸在脑中被视作代谢废物,对其功能认识严重滞后。近年来,越来越多的证据表明,乳酸在多种生理与病理过程中扮演重要角色。在神经细胞中,星形胶质细胞是产生和释放乳酸的主要细胞源,该细胞通过有氧糖酵解过程生成乳酸,随后经跨膜通道释放至胞外进入神经元为其供能。在中枢神经系统中,乳酸对稳态调节发挥着十分重要的作用。乳酸主要通过两种途径,即代谢途径(作为能量底物)与信号途径(作为信号分子)调控神经元的功能活动,广泛参与神经元能量代谢、兴奋性、可塑性、学习记忆及神经系统发育等生理过程调节,亦参与抑郁行为、阿尔兹海默病(AD)和脑损伤等病理过程的调节。在脑组织中,存在着乳酸特异性受体(GPR81),乳酸与其结合后调控胞内的第二信使。此外,还发现乳酸可通过未知受体调节神经元的兴奋性以及作为信号分子的其他作用。本文就乳酸作为能量底物和信号分子及其参与相关神经疾病的研究进展进行阐述,旨在为相关中枢神经系统疾病防治提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号