首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two series of moscatilin derivatives were designed, synthesized and evaluated as anti-tumor and anti-angiogenesis agents. Most of these compounds showed moderate-to-obvious cytotoxicity against five cancer cell lines (A549, HepG2, MDA-MB-231, MKN-45, HCT116). Among these cell lines, compounds had obvious effects on HCT116. Especially for 8Ae, the IC50 was low to 0.25 μM. 8Ae can inhibit the viability and induce the apoptosis of HCT116 cells but exhibit no cytotoxic activity in noncancerous NCM460 colon cells. 8Ae can also arrest the G2/M cell cycle in HCT116 cells by inhibiting the α-tubulin expression. Zebrafish bioassay-guided screen showed the 22 moscatilin derivatives had potent anti-angiogenic activities and compound 8Ae had better activities than positive compound. Molecular docking indicated 8Ae interacted with tubulin at the affinity of −7.2 Kcal/mol. In conclusion, compound 8Ae was a potential antitumor and anti-angiogenesis candidate for further development.  相似文献   

2.
3.

Objective

Development of treatment resistance and adverse toxicity associated with classical chemotherapeutic agents highlights the need for safer and effective therapeutic approaches. Herein, we examined the effectiveness of a combination treatment regimen of 5-fluorouracil (5-FU) and curcumin in colorectal cancer (CRC) cells.

Methods

Wild type HCT116 cells and HCT116+ch3 cells (complemented with chromosome 3) were treated with curcumin and 5-FU in a time- and dose-dependent manner and evaluated by cell proliferation assays, DAPI staining, transmission electron microscopy, cell cycle analysis and immunoblotting for key signaling proteins.

Results

The individual IC50 of curcumin and 5-FU were approximately 20 µM and 5 µM in HCT116 cells and 5 µM and 1 µM in HCT116+ch3 cells, respectively (p<0.05). Pretreatment with curcumin significantly reduced survival in both cells; HCT116+ch3 cells were considerably more sensitive to treatment with curcumin and/or 5-FU than wild-type HCT116 cells. The IC50 values for combination treatment were approximately 5 µM and 1 µM in HCT116 and 5 µM and 0.1 µM in HCT116+ch3, respectively (p<0.05). Curcumin induced apoptosis in both cells by inducing mitochondrial degeneration and cytochrome c release. Cell cycle analysis revealed that the anti-proliferative effect of curcumin and/or 5-FU was preceded by accumulation of CRC cells in the S cell cycle phase and induction of apoptosis. Curcumin potentiated 5-FU-induced expression or cleavage of pro-apoptotic proteins (caspase-8, -9, -3, PARP and Bax), and down-regulated anti-apoptotic (Bcl-xL) and proliferative (cyclin D1) proteins. Although 5-FU activated NF-κB/PI-3K/Src pathway in CRC cells, this was down-regulated by curcumin treatment through inhibition of IκBα kinase activation and IκBα phosphorylation.

Conclusions

Combining curcumin with conventional chemotherapeutic agents such as 5-FU could provide more effective treatment strategies against chemoresistant colon cancer cells. The mechanisms involved may be mediated via NF-κB/PI-3K/Src pathways and NF-κB regulated gene products.  相似文献   

4.
The synthesis of a series of andrographolide-19-oic acid derivatives was described and their in vitro anti-tumor activity against two human cell lines was evaluated. Most compounds were found to exhibit significant cytotoxicity, better than andrographolide, and compounds 9d and 9b were identified as the most potent with IC50 values of 1.18 and 6.28 μm against HCT-116 and MCF-7 cell lines, respectively. The preliminary results indicated that the oxidation of C-19-hydroxyl group of andrographolide to corresponding carboxyl group and the subsequent esterification of the formed carboxylic acid led to considerable improvement in cytotoxicity against the cancer cells.  相似文献   

5.
In this study, 13 panaxadiol (PD) derivatives were synthesized via reactions with aromatic compounds and amino acids. Following this, the cytotoxicity of these compounds was evaluated against four cancer cell lines (human hepatoma cells HepG‐2, human lung cancer cells A549, human breast cancer cells MCF‐7, and human colon cancer cells HCT‐116) and one normal cell lines (human gastric epithelial cells GES‐1). The results showed that the panaxadiol derivatives 3 , 12 , and 13 showed significant inhibition of cellular proliferation against cancer cells compared with PD, and the panaxadiol derivative 12 had the lowest IC50 value for A549 (IC50=18.91±1.03 μm ). For MCF‐7 cells, most compounds exhibited good inhibition of cellular proliferation, and the panaxadiol derivative 13 showed the strongest inhibitory effect (IC50=8.62±0.23 μm ), which significantly increased the cytotoxicity of PD and was stronger than the positive control (mitomycin). For normal cells, all compounds exhibited low or no toxic effects; thus, these derivatives can be used to develop novel antiproliferative agents.  相似文献   

6.
A series of forty α-substituted chalcones were synthesized and screened for their antiproliferative activities against HCT116 (colorectal) and HCC1954 (breast) cancer cell lines. Compounds 5a and 5e were found to be the most potent compounds with GI50 values of 0.63 µM and 0.725 µM in HCC1954 cell line and 0.69 µM and 1.59 µM in HCT116 cell line, respectively. Both compounds induced a G2/M cell cycle arrest and caused apoptotic cell death in HCT116 cells as shown by the induction of PARP cleavage. The compounds also stabilized p53 in a dose-dependent manner in HCT116 cells following 24-hour treatment. Furthermore, both 5a and 5e were able to overcome multidrug resistance in two MDR-1 overexpressing multidrug resistant cell lines.  相似文献   

7.
We report the discovery of a series of substituted N′-(2-oxoindolin-3-ylidene)benzohydrazides as inducers of apoptosis using our proprietary cell- and caspase-based ASAP HTS assay. Through SAR studies, N′-(4-bromo-5-methyl-2-oxoindolin-3-ylidene)-3,4,5-trimethoxybenzohydrazide (3g) was identified as a potent apoptosis inducer with an EC50 value of 0.24 μM in human colorectal carcinoma HCT116 cells, more than a 40-fold increase in potency from the initial screening hit N′-(5-bromo-2-oxoindolin-3-ylidene)-3,4,5-trimethoxybenzohydrazide (2a). Compound 3g also was found to be highly active in a growth inhibition assay with a GI50 value of 0.056 μM in HCT116 cells. A group of potentially more aqueous soluble analogs were prepared and found to be highly active. Among them, compound 4e incorporating a methyl piperazine moiety was found to have EC50 values of 0.17, 0.088 and 0.14 μM in human colorectal carcinoma cells HCT116, hepatocellular carcinoma cancer SNU398 cells and human colon cancer RKO cells, respectively. Compounds 3g and 4e were found to function as inhibitors of tubulin polymerization.  相似文献   

8.
Herein, we report the development of highly potent HDAC inhibitors for the treatment of cancer. A series of adamantane and nor-adamantane based HDAC inhibitors were designed, synthesized and screened for the inhibitory activity of HDAC. A number of compounds exhibited GI50 of 10-100 nM in human HCT116, NCI-H460 and U251 cancer cells, in vitro. Compound 32 displays efficacy in human tumour animal xenograft model.  相似文献   

9.
Cyclin-dependent kinase inhibition is considered a promising target for cancer treatment for its crucial role in cell cycle regulation. Pyrazolo pyrimidine derivatives were well established for their antitumor activity via CDK2 inhibition. In this research, new series of pyrazolopyrimidine derivatives (4–15) was designed and synthesised as novel CDK2 inhibitors. The anti-proliferative activities against MCF-7, HCT-116, and HepG-2 were used to evaluate their anticancer activity as novel CDK2 inhibitors. Most of the compounds showed superior cytotoxic activity against MCF-7 and HCT-116 compared to Sorafenib. Only compounds 8, 14, and 15 showed potent activity against HepG-2. The CDK2/cyclin A2 enzyme inhibitory activity was tested for all synthesised compounds. Compound 15 showed the most significant inhibitory activity with IC50 0.061 ± 0.003 µM. It exerted remarkable alteration in Pre G1 and S phase cell cycle progression and caused apoptosis in HCT cells. In addition, the normal cell line cytotoxicity for compound 15 was assigned revealing low cytotoxic results in normal cells rather than cancer cells. Molecular docking was achieved on the designed compounds and confirmed the two essential hydrogen binding with Leu83 in CDK2 active site. In silico ADMET studies and drug-likeness showed proper pharmacokinetic properties which helped in structure requirements prediction for the observed antitumor activity.  相似文献   

10.
N-(2-Methylphenyl)-9-oxo-9H-fluorene-1-carboxamide (2a) was identified as a novel apoptosis inducer through our caspase- and cell-based high-throughput screening assay. Compound 2a was found to be active with sub-micromolar potencies for both caspase induction and growth inhibition in T47D human breast cancer, HCT116 human colon cancer, and SNU398 hepatocellular carcinoma cancer cells. It arrested HCT116 cells in G2/M followed by apoptosis as assayed by the flow cytometry. Structure–activity relationship (SAR) studies of the carboxamide group identified the lead compound N-(2-(1H-pyrazol-1-yl)phenyl)-9-oxo-9H-fluorene-1-carboxamide (6s). Compound 6s, with increased aqueous solubility, was found to retain the broad activity in the caspase activation assay and in the cell growth inhibition assay with sub-micromolar EC50 and GI50 values in T47D, HCT116, and SNU398 cells, respectively.  相似文献   

11.
A series of 3,19-isopropylidene-/or arylidene-andrographolide analogs were synthesized and their structures were confirmed by NMR spectroscopic methodology. Twenty-five analogs were evaluated for their in vitro cytotoxic activity against HT-29, HepG2 and LNCaP cancer cell lines based on the sulforhodamine B (SRB) assay. Analog 2 f exhibited the most potent cytotoxic activity, with IC50 values of 11.14 and 9.25 μM on HepG2 and LNCaP cancer cell lines, respectively. Esterification of hydroxy functional group at position C-14 in andrographolide analogs, 2 a and 2 b , showed somewhat higher cytotoxicity than the precursor. In addition, andrographolide analogs ( 2 a – 2 d , 2 f , 3 a , 4 a and 4 h ) were evaluated for the NO inhibitory activity in the LPS stimulated RAW264.7 macrophages. The most active analog 2 a significantly reduced nitric oxide (NO) production from LPS stimulated RAW264.7 cells, with IC50 values of 0.34±0.02 μM providing encouraging results for anti-inflammatory compound development.  相似文献   

12.
To identify anticancer agents with higher potency and lower toxicity, a series of oridonin derivatives with substituted benzene moieties at the C17 position were designed, synthesised, and evaluated for their antiproliferative properties. Most of the derivatives exhibited antiproliferative effects against AGS, MGC803, Bel7402, HCT116, A549, and HeLa cells. Compound 2p (IC50?=?1.05?µM) exhibited the most potent antiproliferative activity against HCT116 cells; it was more potent than oridonin (IC50?=?6.84?µM) and 5-fluorouracil (5-FU) (IC50?=?24.80?µM). The IC50 value of 2p in L02 cells was 6.5-fold higher than that in HCT116 cells. Overall, it exhibited better selective antiproliferative activity and specificity than oridonin and 5-FU. Furthermore, compound 2p arrested HCT116 cells at the G2 phase of the cell cycle and increased the percentage of apoptotic cells to a greater extent than oridonin.  相似文献   

13.
A series of 1-sulfonyl indolines was synthesized and evaluated for antiproliferative activity. The most potent compounds 9a and 9e showed significant cytotoxicity (IC50 in the range of 0.055–0.105 and 0.039–0.112 μM, respectively) against four human cancer cell lines HCT116, PC3, HepG2 and SK-OV-3. The structure–activity relationship of this series of sulfonamides, including the influence of azaheterocycle rings, substituent at the different positions of indoline, and the cyclopropane moiety, was described.  相似文献   

14.
A series of aminochalcone derivatives have been synthesized, characterized by HRMS, 1H NMR and 13C NMR and evaluated for their antiproliferative activity against HepG2 and HCT116 human cancer cell lines. The most of new synthesized compounds displayed moderate to potent antiproliferative activity against test cancer cell lines. Among the derivatives, compound 4 displayed potent inhibitory activity with IC50 values ranged from 0.018 to 5.33 μM against all tested cancer cell lines including drug resistant HCT-8/T. Furthermore, this compound showed low cytotoxicity on normal human cell lines (LO2). The in vitro tubulin polymerization assay showed that compound 4 inhibited tubulin assembly in a concentration-dependent manner with IC50 value of 7.1 μM, when compared to standard colchicine (IC50 = 9.0 μM). Further biological evaluations revealed that compound 4 was able to arrest the cell cycle in G2/M phase. Molecular docking study demonstrated the interaction of compound 4 at the colchicine binding site of tubulin. All the results indicated that compound 4 is a promising inhibitor of tubulin polymerization for the treatment of cancer.  相似文献   

15.
A series of new imidazole carboxylic esters (carbamates) and N-acylimidazole derivatives of betulin and betulinic acid (1429) have been synthesized. The new compounds were screened for in vitro cytotoxicity activity against human cancer cell lines HepG2, Jurkat and HeLa. A number of compounds have shown IC50 values lower than 2 μM against the cancer cell lines tested and the vast majority has shown a better cytotoxicity profile than betulinic acid, including the betulin derivatives. N-Acylimidazole derivatives 26 and 27 (IC50 0.8 and 1.7 μM in HepG2 cells) and the C-3 carbamate derivative 16 (IC50 2.0 μM in HepG2 cells) were the most promising compounds. Based on the observed cytotoxicity, structure–activity relationships have been established.  相似文献   

16.
Different quinazoline derivatives have showed wide spectrum of pharmacological activities. Some 3-(arylideneamino)-phenylquinazoline-4(3H)-ones have been reported to possess antimicrobial activity. The present study has been undertaken to evaluate the anticancer effect of these quinazolinone derivatives. The quinazolinone derivatives were synthesized as reported earlier. Compounds containing NO(2), OH, OCH(3), or OH and OCH(3) as substituent(s) on the arylideneamino group were named as P(3a), P(3b), P(3c), and P(3d) respectively. Out of these, P(3a) and P(3d) showed better cytotoxic activity than P(3b) and P(3c) on a panel of six cancer cell lines of different origin, namely, B16F10, MiaPaCa-2, HCT116, HeLa, MCF7, and HepG2, though the effect was higher in B16F10, HCT116, and MCF7 cells. P(3a) and P(3d) induced death of B16F10 and HCT116 cells was associated with characteristic apoptotic changes like cell shrinkage, nuclear condensation, DNA fragmentation, and annexin V binding. Also, cell cycle arrest at G1 phase, alteration of caspase-3, caspase-9, Bcl-2 and PARP levels, loss of mitochondrial membrane potential, and enhanced level of cytosolic cytochrome c were observed in treated B16F10 cells. Treatment with multiple doses of P(3a) significantly increased the survival rate of B16F10 tumor bearing BALB/c mice by suppressing the volume of tumor while decreasing microvascular density and mitotic index of the tumor cells.  相似文献   

17.
A series of chalcones containing naphthalene moiety 4a4p have been synthesized, characterized by 1H NMR and 13C NMR and evaluated for their in vitro anticancer activity. The majority of the screened compounds displayed potent anticancer activity against both HCT116 and HepG2 human cancer cell lines. Among the series, compound 4h with a diethylamino group at the para position of the phenyl ring exhibited the most potent anticancer activity against HCT116 and HepG2 cell lines with IC50 values of 1.20 ± 0.07 and 1.02 ± 0.04 μM, respectively. The preliminary structure–activity relationship has been summarized. Tubulin polymerization experiments indicated that 4h effectively inhibited tubulin polymerization and flow cytometric assay revealed that 4h arrests HepG2 cells at the G2/M phase in a dose-dependent manner. Furthermore, molecular docking studies suggested that 4h binds to the colchicine binding site of tubulin.  相似文献   

18.
Andrographolide, the major diterpenoidal constituent of Andrographis paniculata (Acanthaceae) and its derivatives have been reported to possess plethora of biological properties including potent anti-cancer activity. In this work, synthesis and in-vitro anti-cancer evaluation of new C-12-substituted aryl amino 14-deoxy-andrographolide derivatives (III af) are reported. The substitutions include various sulfonamide moieties –SO2-NH-R1. The new derivatives (III ae) exhibited improved cytotoxicity (GI50, TGI and LC50) compared to andrographolide (I) and the corresponding 3,14,19-O-triacetyl andrographolide (II) when evaluated against 60 NCI cell line panel. Compounds III c and III e are found to be non-toxic to normal human dermal fibroblasts (NHDF) cells compared to reference drug THZ-1.  相似文献   

19.
To find histone deacetylase 3 (HDAC3)-selective inhibitors, a series of 504 candidates was assembled using “click chemistry”, by reacting nine alkynes bearing a zinc-binding group with 56 azide building blocks in the presence of Cu(I) catalyst. Screening of the 504-member triazole library against HDAC3 and other HDAC isozymes led to the identification of potent and selective HDAC3 inhibitors T247 and T326. These compounds showed potent HDAC3 inhibition with submicromolar IC50s, whereas they did not strongly inhibit other isozymes. Compounds T247 and T326 also induced a dose-dependent selective increase of NF-κB acetylation in human colon cancer HCT116 cells, indicating selective inhibition of HDAC3 in the cells. In addition, these HDAC3-selective inhibitors induced growth inhibition of cancer cells, and activated HIV gene expression in latent HIV-infected cells. These findings indicate that HDAC3-selective inhibitors are promising candidates for anticancer drugs and antiviral agents. This work also suggests the usefulness of the click chemistry approach to find isozyme-selective HDAC inhibitors.  相似文献   

20.
A series of novel pteridinone derivatives possessing a hydrazone moiety were designed, synthesized and evaluated for their biological activity. Most of the synthesized compounds demonstrated moderate to excellent activity against A549, HCT116 and PC-3 cancer cell lines. In particular, compound L19 exhibited the most potent antiproliferative effects on three cell lines with IC50 values of 3.23 μM, 4.36 μM and 8.20 μM, respectively. In kinase assays, the compound L19 also showed potent inhibition activity toward PLK1 with % inhibition values of 75.1. Further mechanism studies revealed that compound L19 significantly inhibited proliferation of HCT-116 cell lines, induced a great decrease in mitochondrial membrane potential resulting in apoptosis of cancer cells, inhibited the migration of tumor cells, and arrested G1 phase of HCT116 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号