首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specific cell type during early development, and how, or if, pluripotent genes, such as Oct4 and Sox2, play a role in this transition. Here, by studying the dynamic changes in the expression of embryonic surface antigens, we identified the sequential loss of Tra-1-81 and SSEA4 during hESC neural differentiation and isolated a transient Tra-1-81(-)/SSEA4(+) (TR-/S4+) cell population in the early stage of neural differentiation. These cells are distinct from both undifferentiated hESCs and their committed neural progenitor cells (NPCs) in their gene expression profiles and response to extracellular signalling; they co-express both the pluripotent gene Oct4 and the neural marker Pax6. Furthermore, these TR-/S4+ cells are able to produce cells of both neural and non-neural lineages, depending on their environmental cues. Our results demonstrate that expression of the pluripotent factor Oct4 is progressively downregulated and is accompanied by the gradual upregulation of neural genes, whereas the pluripotent factor Sox2 is consistently expressed at high levels, indicating that these pluripotent factors may play different roles in the regulation of neural differentiation. The identification of TR-S4+ cells provides a cell model for further elucidation of the molecular mechanisms underlying hESC neural differentiation.  相似文献   

2.
3.
Valproate (VPA), an effective clinical approved anti‐epileptic drug and mood stabilizer, has been believed to induce neuronal differentiation at the expense of inhibiting astrocytic and oligodendrocytic differentiation. Nevertheless, the involving mechanisms of it remain unclear yet. In the present study, we explored the global gene expression changes of fetus rat hippocampal neural stem cells following VPA treatment by high‐throughput microarray. We obtained 874 significantly upregulated genes and 258 obviously downregulated genes (fold change > 2 and P < 0.05). Then, we performed gene ontology and pathway analyses of these differentially expressed genes and chose several genes associated with nervous system according to gene ontology analysis to conduct expression analysis to validate the reliability of the array results as well as reveal possible mechanisms of VPA. To get a better comprehension of the differentially regulated genes by VPA, we conducted protein–protein association analysis of these genes, which offered a source for further studies. In addition, we made the overlap between the VPA‐downregulated genes and the predicted target genes of VPA‐upregulated microRNAs (miRNAs), which were previously demonstrated. These overlapped genes may provide a source to find functional VPA/miRNA/mRNA axes during neuronal differentiation. This study first constructed a comprehensive potential downstream gene map of VPA in the process of neuronal differentiation.  相似文献   

4.
Monochamus alternatus Hope (Coleoptera: cerambycidae), the Japanese pine sawyer beetle, is a serious pest management concern in pine stands. A new organophosphorus insecticide, chloramine phosphorus (CP), has been applied as an insecticide in China to control M. alternatus. In this study, we investigated gene expression changes in M. alternatus after 4 h of exposure to CP using a 60-mer oligonucleotide microarray. The results showed that 356 genes were differentially expressed, of which 76 were upregulated and 280 were downregulated. GO enrichment analysis of the differentially expressed genes indicated that those involved in structural molecule activity and transporter activity were among the most highly represented. Within the cellular component category of GO, cell and cell part were the most represented GO terms in upregulated genes. “Cellular process” was the most represented GO term in the biological process category among the downregulated genes. Molecular pathway analysis showed that a large portion of the differentially expressed genes were associated with metabolic pathways. This study sought to identify new biomarkers as nonacetylcholinesterase targets to assess the secondary effects of CP on M. alternatus and will provide a valuable resource for the scientific community to study the molecular toxicology of CP.  相似文献   

5.
Liu X  Niu T  Liu X  Hou W  Zhang J  Yao L 《Gene》2012,503(1):48-55
Previous studies have demonstrated that N-Myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor that is downregulated in many human cancers and when overexpressed, can inhibit tumor growth and metastasis. However, its molecular function, its modulatory targets, and signaling pathways associated with it remain unclear. Here, in an effort to identify the genes modulated by NDRG2 expression, a microarray study was conducted to detect the expression profile of HepG2 cells overexpressing NDRG2 or LacZ. Gene Ontology (GO) biological process analysis revealed that genes related to G protein signaling pathway were upregulated. Five of them were selected and verified by real-time PCR. Gene sets related to M phase of cell cycle were downregulated. This was in agreement with cell cycle analysis. Signaling pathway analysis demonstrated apparent augmented hematopoietic cell lineage pathway and cell adhesion, but reduced glycosylphosphatidylinositol (GPI)-anchor biosynthesis, protein degradation and SNARE interactions. Furthermore, through motif analysis and experimental validation, we found that the p38 phosphorylation can be increased by NDRG2. Our research provides the molecular basis for understanding the role of NDRG2 in tumor cells and raises interesting questions about its mechanisms and potential use in cancer therapy.  相似文献   

6.
Gene expression profiling of mouse embryonic stem cell subpopulations   总被引:3,自引:0,他引:3  
We previously demonstrated that mouse embryonic stem (ES) cells show a wide variation in the expression of platelet endothelial cell adhesion molecule 1 (PECAM1) and that the level of expression is positively correlated with the pluripotency of ES cells. We also found that PECAM1-positive ES cells could be divided into two subpopulations according to the expression of stage-specific embryonic antigen (SSEA)-1. ES cells that showed both PECAM1 and SSEA-1 predominantly differentiated into epiblast after the blastocyst stage. In the present study, we performed pairwise oligo microarray analysis to characterize gene expression profiles in PECAM1-positive and -negative subpopulations of ES cells. The microarray analysis identified 2034 genes with a more than 2-fold difference in expression levels between the PECAM1-positive and -negative cells. Of these genes, 803 were more highly expressed in PECAM1-positive cells and 1231 were more highly expressed in PECAM1-negative cells. As expected, genes known to function in ES cells, such as Pou5f1(Oct3/4)and Nanog, were found to be upregulated in PECAM1-positive cells. We also isolated 23 previously uncharacterized genes. A comparison of gene expression profiles in PECAM1-positive cells that were either positive or negative for SSEA-1 expression identified only 53 genes that showed a more than 2-fold greater difference in expression levels between these subpopulations. However, many genes that are under epigenetic regulation, such as globins, Igf2, Igf2r, andH19, showed differential expression. Our results suggest that in addition to differences in gene expression profiles, epigenetic status was altered in the three cell subpopulations.  相似文献   

7.
Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4) into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications.  相似文献   

8.
9.

Background

Mycobacterium bovis, the causative agent of bovine tuberculosis, is a major cause of mortality in global cattle populations. Macrophages are among the first cell types to encounter M. bovis following exposure and the response elicited by these cells is pivotal in determining the outcome of infection. Here, a functional genomics approach was undertaken to investigate global gene expression profiles in bovine monocyte-derived macrophages (MDM) purified from seven age-matched non-related females, in response to in vitro challenge with M. bovis (multiplicity of infection 2∶1). Total cellular RNA was extracted from non-challenged control and M. bovis-challenged MDM for all animals at intervals of 2 hours, 6 hours and 24 hours post-challenge and prepared for global gene expression analysis using the Affymetrix® GeneChip® Bovine Genome Array.

Results

Comparison of M. bovis-challenged MDM gene expression profiles with those from the non-challenged MDM controls at each time point identified 3,064 differentially expressed genes 2 hours post-challenge, with 4,451 and 5,267 differentially expressed genes detected at the 6 hour and 24 hour time points, respectively (adjusted P-value threshold ≤0.05). Notably, the number of downregulated genes exceeded the number of upregulated genes in the M. bovis-challenged MDM across all time points; however, the fold-change in expression for the upregulated genes was markedly higher than that for the downregulated genes. Systems analysis revealed enrichment for genes involved in: (1) the inflammatory response; (2) cell signalling pathways, including Toll-like receptors and intracellular pathogen recognition receptors; and (3) apoptosis.

Conclusions

The increased number of downregulated genes is consistent with previous studies showing that M. bovis infection is associated with the repression of host gene expression. The results also support roles for MyD88-independent signalling and intracellular PRRs in mediating the host response to M. bovis.  相似文献   

10.
11.
cDNA microarray and proteomics studies were performed to analyze the genomic and proteomic expression patterns in HPV-16 E6 gene transfected stable human carcinoma cell lines. Among 1024 known genes and ESTs tested by cDNA microarray, we found 50 upregulated and 35 downregulated genes in RC10.1 HPV-16 E6 transfected human colon adenocarcinoma cells compared to RKO cells, and 27 upregulated and 43 downregulated genes in A549E6 HPV-16 E6 transfected human lung adenocarcinoma cells compared to A549 cells. Employing two dimensional gel electrophoresis and MALDI-TOF-MS, the global pattern of protein expressions in RC10.1 human colon adenocarcinoma and A549E6 human lung adenocarcinoma cell lines stably expressing the HPV 16-E6 gene were compared with those of RKO and A549 cell lines to generate a differential protein expression catalog. We found 13 upregulated and 13 downregulated proteins in RC10.1 (E6-expressing RKO) cells compared to RKO cells and 12 upregulated and 14 downregulated proteins in A549E6 (E6-expressing A549) cells compared to A549 cells. The identified genes and proteins were classified into several groups according to the subcellular function. Expressing pattern of three genes and proteins (CDK5, Bak, and I-TRAF) were matched in both analyses of cDNA microarray and proteomics. These powerful approaches using cDNA microarray and proteomics could provide in-depth information on the impact of HPV-16 E6-related genes and proteins. Differential gene and protein expression patterns by transfection of HPV-16 E6 will provide the nucleus of valuable resource for investigation of the biochemical basis of cervical carcinogenesis. Further understanding of this data base may provide valuable resources for developing novel diagnostic markers and therapeutic targets of cervical cancer.  相似文献   

12.
The biological effect of radiofrequency (RF) fields remains controversial. We address this issue by examining whether RF fields can cause changes in gene expression. We used the pulsed RF fields at a frequency of 2.45 GHz that is commonly used in telecommunication to expose cultured human HL-60 cells. We used the serial analysis of gene expression (SAGE) method to measure the RF effect on gene expression at the genome level. We observed that 221 genes altered their expression after a 2-h exposure. The number of affected genes increased to 759 after a 6-h exposure. Functional classification of the affected genes reveals that apoptosis-related genes were among the upregulated ones and the cell cycle genes among the downregulated ones. We observed no significant increase in the expression of heat shock genes. These results indicate that the RF fields at 2.45 GHz can alter gene expression in cultured human cells through non-thermal mechanism.  相似文献   

13.
14.
Lung cancer is the leading cause of cancer death in both men and women. Tumor metastasis is an essential aspect of lung cancer progression. nm23-H1 is a metastasis suppressor gene. The molecular mechanism by which nm23-H1 suppresses the metastasis is still unclear. Here, we compared the gene expression profile of human large cell lung cancer cell line NL9980 by nm23-H1 gene silencing with that of negative control cells to comprehensively investigate nm23-H1-mediated changes in gene expression of NL9980 cells. Microarray assay revealed that expression of 733-known genes (1.9%, 733/38,500) were altered in response to nm23-H1 gene silencing, including 466 upregulated genes and 267 downregulated. real-time PCR assay of the expression changes indicated that 81.82% (45/55) of verified genes were consistent with that observed in microarray assay. The upregulated genes included MMP-1, -2, SNAI2, CXCL1, 2, 3, PAI-2, while the downregulated genes included cystatin B, TIMP-2, E-cadherin, centrin-2, all of which have been associated with tumor metastasis. Furthermore, we confirmed by Western blot that the expression of MMP-1 and -2 were significantly increased while that of cystatin B was dramatically decreased in NL9980-nm23-H1 silencing cells. The NL9980-nm23-H1 silencing cells exhibited significantly more S phase growth and invasive ability. Thus, silencing of nm23-H1 gene caused metastasis-related gene expression changes in lung cancer cells. The knockdown of nm23-H1 expression may change the lung cancer cells to a more invasive phenotype through alteration in the expression of a set of genes.  相似文献   

15.
Oct3/4 plays a critical role in maintaining embryonic stem cell pluripotency. Regulatable transgene-mediated sustained Oct3/4 expression in ES cells cultured in serum-free LIF-deficient medium caused accelerated differentiation to neuroectoderm-like cells that expressed Sox2, Otx1 and Emx2 and subsequently differentiated into neurons. Neurogenesis of ES cells is promoted by SDIA (stromal cell-derived inducing activity), which accumulates on the PA6 stromal cell surface. Oct3/4 expression in ES cells was maintained by SDIA whereas without it expression was promptly downregulated. Suppression of Oct3/4 abolished neuronal differentiation even after stimulation by SDIA. In contrast, sustained upregulated Oct3/4 expression enhanced SDIA-mediated neurogenesis of ES cells. Therefore, Oct3/4 appears to promote neuroectoderm formation and subsequent neuronal differentiation from ES cells.  相似文献   

16.
17.
Human embryonic stem cell (hESC) lines are derived from the inner cell mass (ICM) of preimplantation human blastocysts obtained on days 5–6 following fertilization. Based on their derivation, they were once thought to be the equivalent of the ICM. Recently, however, studies in mice reported the derivation of mouse embryonic stem cell lines from the epiblast; these epiblast lines bear significant resemblance to human embryonic stem cell lines in terms of culture, differentiation potential and gene expression. In this study, we compared gene expression in human ICM cells isolated from the blastocyst and embryonic stem cells. We demonstrate that expression profiles of ICM clusters from single embryos and hESC populations were highly reproducible. Moreover, comparison of global gene expression between individual ICM clusters and human embryonic stem cells indicated that these two cell types are significantly different in regards to gene expression, with fewer than one half of all genes expressed in both cell types. Genes of the isolated human inner cell mass that are upregulated and downregulated are involved in numerous cellular pathways and processes; a subset of these genes may impart unique characteristics to hESCs such as proliferative and self-renewal properties.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号