首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
RIG-I-like receptors (RLRs), including retinoic acid-inducible gene-I (RIG-I) and MDA5, constitute a family of cytoplasmic RNA helicases that senses viral RNA and mounts antiviral innate immunity by producing type I interferons and inflammatory cytokines. Despite their essential roles in antiviral host defense, RLR signaling is negatively regulated to protect the host from excessive inflammation and autoimmunity. Here, we identified ADP-ribosylation factor-like protein 5B (Arl5B), an Arl family small GTPase, as a regulator of RLR signaling through MDA5 but not RIG-I. Overexpression of Arl5B repressed interferon β promoter activation by MDA5 but not RIG-I, and its knockdown enhanced MDA5-mediated responses. Furthermore, Arl5B-deficient mouse embryonic fibroblast cells exhibited increased type I interferon expression in response to MDA5 agonists such as poly(I:C) and encephalomyocarditis virus. Arl5B-mediated negative regulation of MDA5 signaling does not require its GTP binding ability but requires Arl5B binding to the C-terminal domain of MDA5, which prevents interaction between MDA5 and poly(I:C). Our results, therefore, suggest that Arl5B is a negative regulator for MDA5.  相似文献   

4.
Retinoic acid-inducible gene I (RIG-I) recognizes specific molecular patterns of viral RNAs for inducing type I interferon. The C-terminal domain (CTD) of RIG-I binds to double-stranded RNA (dsRNA) with the 5′-triphosphate (5′-PPP), which induces a conformational change in RIG-I to an active form. It has been suggested that RIG-I detects infection of influenza A virus by recognizing the 5′-triphosphorylated panhandle structure of the viral RNA genome. Influenza panhandle RNA has a unique structure with a sharp helical bending. In spite of extensive studies of how viral RNAs activate RIG-I, whether the structural elements of the influenza panhandle RNA confer the ability to activate RIG-I signaling has been poorly explored. Here, we investigated the dynamics of the influenza panhandle RNA in complex with RIG-I CTD using NMR spectroscopy and showed that the bending structure of the panhandle RNA negates the requirement of a 5′-PPP moiety for RIG-I activation.  相似文献   

5.
RIG-I is a DExD/H-box RNA helicase and functions as a critical cytoplasmic sensor for RNA viruses to initiate antiviral interferon (IFN) responses. Here we demonstrate that another DExD/H-box RNA helicase DHX36 is a key molecule for RIG-I signaling by regulating double-stranded RNA (dsRNA)-dependent protein kinase (PKR) activation, which has been shown to be essential for the formation of antiviral stress granule (avSG). We found that DHX36 and PKR form a complex in a dsRNA-dependent manner. By forming this complex, DHX36 facilitates dsRNA binding and phosphorylation of PKR through its ATPase/helicase activity. Using DHX36 KO-inducible MEF cells, we demonstrated that DHX36 deficient cells showed defect in IFN production and higher susceptibility in RNA virus infection, indicating the physiological importance of this complex in host defense. In summary, we identify a novel function of DHX36 as a critical regulator of PKR-dependent avSG to facilitate viral RNA recognition by RIG-I-like receptor (RLR).  相似文献   

6.
The RIG-I like receptor (RLR) comprises three homologues: RIG-I (retinoic acid-inducible gene I), MDA5 (melanoma differentiation-associated gene 5), and LGP2 (laboratory of genetics and physiology 2). Each RLR senses different viral infections by recognizing replicating viral RNA in the cytoplasm. The RLR contains a conserved C-terminal domain (CTD), which is responsible for the binding specificity to the viral RNAs, including double-stranded RNA (dsRNA) and 5′-triphosphated single-stranded RNA (5′ppp-ssRNA). Here, the solution structures of the MDA5 and LGP2 CTD domains were solved by NMR and compared with those of RIG-I CTD. The CTD domains each have a similar fold and a similar basic surface but there is the distinct structural feature of a RNA binding loop; The LGP2 and RIG-I CTD domains have a large basic surface, one bank of which is formed by the RNA binding loop. MDA5 also has a large basic surface that is extensively flat due to open conformation of the RNA binding loop. The NMR chemical shift perturbation study showed that dsRNA and 5′ppp-ssRNA are bound to the basic surface of LGP2 CTD, whereas dsRNA is bound to the basic surface of MDA5 CTD but much more weakly, indicating that the conformation of the RNA binding loop is responsible for the sensitivity to dsRNA and 5′ppp-ssRNA. Mutation study of the basic surface and the RNA binding loop supports the conclusion from the structure studies. Thus, the CTD is responsible for the binding affinity to the viral RNAs.  相似文献   

7.
8.
9.
10.
The current view of cytoplasmic RNA-mediated innate immune signaling involves the differential activation of the RNA helicases retinoic acid-inducible gene 1 (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology-2 (LGP2) by distinct RNA viruses. RIG-I, MDA5 and LGP2 form the RIG-I like receptor family (RLR). Since the initial characterization of the RLRs rapid progress has been made in the understanding of the molecular mechanisms that upon virus infection lead to the activation of downstream signaling cascades and the subsequent induction of type I interferon (IFN) and proinflammatory cytokines by these receptors. However, antiviral responses must be tightly regulated in order to prevent uncontrolled production of type I IFN that might have deleterious effects on the host. Exploring the structural and molecular mechanisms that underlie RLR signaling thus was accompanied by the discovery of how RLR-dependent antiviral responses are modulated. This article summarizes the current understanding of endogenous regulation in RLR signaling by various intrinsic molecules that exert their regulatory function in both the steady state or upon viral infection by targeting multiple steps of the signaling cascade.  相似文献   

11.
In mammals, viral infections are detected by innate immune receptors, including Toll-like receptor and retinoic acid inducible gene I (RIG-I)-like receptor (RLR), which activate the type I interferon (IFN) system. IFN essentially activates genes encoding antiviral proteins that inhibit various steps of viral replication as well as facilitate the subsequent activation of acquired immune responses. In this study, we investigated the expression of non-coding RNA upon viral infection or RLR activation. Using a microarray, we identified several microRNAs (miRNA) specifically induced to express by RLR signaling. As suggested by Bioinformatics (miRBase Target Data base), one of the RLR-inducible miRNAs, miR-23b, actually knocked down the expression of very low density lipoprotein receptor (VLDLR) and LDLR-related protein 5 (LRP5). Transfection of miR-23b specifically inhibited infection of rhinovirus 1B (RV1B), which utilizes the low density lipoprotein receptor (LDLR) family for viral entry. Conversely, introduction of anti-miRNA-23b enhanced the viral yield. Knockdown experiments using small interfering RNA (siRNA) revealed that VLDLR, but not LRP5, is critical for an efficient infection by RV1B. Furthermore, experiments with the transfection of infectious viral RNA revealed that miR-23b did not affect post-entry viral replication. Our results strongly suggest that RIG-I signaling results in the inhibitions of infections of RV1B through the miR-23b-mediated down-regulation of its receptor VLDLR.  相似文献   

12.
RIG-I and MDA5 are cytoplasmic RNA sensors that mediate cell intrinsic immunity against viral pathogens. While it has been well-established that RIG-I and MDA5 recognize RNA viruses, their interactive network with DNA viruses, including herpes simplex virus 1 (HSV-1), remains less clear. Using a combination of RNA-deep sequencing and genetic studies, we show that the γ134.5 gene product, a virus-encoded virulence factor, enables HSV growth by neutralization of RIG-I dependent restriction. When expressed in mammalian cells, HSV-1 γ134.5 targets RIG-I, which cripples cytosolic RNA sensing and subsequently suppresses antiviral gene expression. Rather than inhibition of RIG-I K63-linked ubiquitination, the γ134.5 protein precludes the assembly of RIG-I and cellular chaperone 14-3-3ε into an active complex for mitochondrial translocation. The γ134.5-mediated inhibition of RIG-I-14-3-3ε binding abrogates the access of RIG-I to mitochondrial antiviral-signaling protein (MAVS) and activation of interferon regulatory factor 3. As such, unlike wild type virus HSV-1, a recombinant HSV-1 in which γ134.5 is deleted elicits efficient cytokine induction and replicates poorly, while genetic ablation of RIG-I expression, but not of MDA5 expression, rescues viral growth. Collectively, these findings suggest that viral suppression of cytosolic RNA sensing is a key determinant in the evolutionary arms race of a large DNA virus and its host.  相似文献   

13.
14.
Nucleic acid–sensing pathways play critical roles in innate immune activation through the production of type I interferon (IFN-I) and proinflammatory cytokines. These factors are required for effective antitumor immune responses. Pharmacological modulators of the pre-mRNA spliceosome splicing factor 3b subunit 1 (SF3B1) are under clinical investigation as cancer cytotoxic agents. However, potential roles of these agents in aberrant RNA generation and subsequent RNA-sensing pathway activation have not been studied. In this study, we observed that SF3B1 pharmacological modulation using pladienolide B (Plad B) induces production of aberrant RNA species and robust IFN-I responses via engagement of the dsRNA sensor retinoic acid–inducible gene I (RIG-I) and downstream interferon regulatory factor 3. We found that Plad B synergized with canonical RIG-I agonism to induce the IFN-I response. In addition, Plad B induced NF-κB responses and secretion of proinflammatory cytokines and chemokines. Finally, we showed that cancer cells bearing the hotspot SF3B1K700E mutation, which leads to global aberrant splicing, had enhanced IFN-I response to canonical RIG-I agonism. Together, these results demonstrate that pharmacological modulation of SF3B1 in cancer cells can induce an enhanced IFN-I response dependent on RIG-I expression. The study suggests that spliceosome modulation may not only induce direct cancer cell cytotoxicity but also initiate an innate immune response via activation of RNA-sensing pathways.  相似文献   

15.
16.
Rhinovirus (RV) infections cause exacerbations and development of severe asthma highlighting the importance of antiviral interferon (IFN) defence by airway cells. Little is known about bronchial smooth muscle cell (BSMC) production of IFNs and whether BSMCs have dsRNA-sensing receptors besides TLR3. dsRNA is a rhinoviral replication intermediate and necrotic cell effect mimic that mediates innate immune responses in bronchial epithelial cells. We have explored dsRNA-evoked IFN-β and IFN-λ1 production in human BSMCs and potential involvement of TLR3 and RIG-I-like receptors (RLRs). Primary BSMCs were stimulated with 0.1–10 µg/ml dsRNA, 0.1–1 µg/ml dsRNA in complex with the transfection agent LyoVec (dsRNA/LyoVec; selectively activating cytosolic RLRs) or infected with 0.05–0.5 MOI RV1B. Both dsRNA stimuli evoked early (3 h), concentration-dependent IFN-β and IFN-λ1 mRNA expression, which with dsRNA/LyoVec was much greater, and with dsRNA was much less, after 24 h. The effects were inhibited by dexamethasone. Further, dsRNA and dsRNA/LyoVec concentration-dependently upregulated RIG-I and MDA5 mRNA and protein. dsRNA and particularly dsRNA/LyoVec caused IFN-β and IFN-λ1 protein production (24 h). dsRNA- but not dsRNA/LyoVec-induced IFN expression was partly inhibited by chloroquine that suppresses endosomal TLR3 activation. RV1B dose-dependently increased BSMC expression of RIG-I, MDA5, IFN-β, and IFN-λ1 mRNA. We suggest that BSMCs express functional RLRs and that both RLRs and TLR3 are involved in viral stimulus-induced BSMC expression of IFN-β and IFN-λ1.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号