首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penicillin G acylase is the key enzyme used in the industrial production of β-lactam antibiotics. This enzyme hydrolyzes penicillin G and related β-lactam antibiotics releasing 6-aminopenicillanic acid, which is an intermediate in the production of semisynthetic penicillins. To improve the enzymatic activity of Escherichia coli penicillin acylase, sequential rounds of error-prone polymerase chain reaction were applied to the E. coli pac gene. After the second round of evolution, the best mutant M2234 with enhanced activity was selected and analyzed. DNA sequence analyses of M2234 revealed that one amino acid residue (K297I), located far from the center of the catalytic pocket, was changed. This mutant (M2234) has a specific activity 4.0 times higher than the parent enzyme and also displayed higher stability at pH 10.  相似文献   

2.
Aculeacin A acylase from Actinoplanes utahensis produced by Streptomyces lividans revealed acylase activities that are able to hydrolyze penicillin V and several natural aliphatic penicillins. Penicillin K was the best substrate, showing a catalytic efficiency of 34.79 mM−1 s−1. Furthermore, aculeacin A acylase was highly thermostable, with a midpoint transition temperature of 81.5°C.  相似文献   

3.
HU is one of the most abundant DNA binding proteins in Escherichia coli. We find that it binds strongly to DNA containing an abasic (AP) site or tetrahydrofuran (THF) (apparent Kd ≈50 nM). It also possesses an AP lyase activity that cleaves at a deoxyribose but not at a THF residue. The binding and cleavage of an AP site was observed only with the HUαβ heterodimer. Site-specific mutations at K3 and R61 residues led to a change in substrate binding and cleavage. Both K3A(α)K3A(β) and R61A(α)R61A(β) mutant HU showed significant reduction in binding to DNA containing AP site; however, only R61A(α)R61A(β) mutant protein exhibited significant loss in AP lyase activity. Both K3A(α)K3A(β) and R61K(α)R61K(β) showed slight reduction in AP lyase activities. The function of HU protein as an AP lyase was confirmed by the ability of hupA or hupB mutations to further reduce the viability of an E. coli dut(Ts) xth mutant, which generates lethal AP sites at 37°C; the hupA and hupB derivatives, respectively, had a 6-fold and a 150-fold lower survival at 37°C than did the parental strain. These data suggest, therefore, that HU protein plays a significant role in the repair of AP sites in E. coli.  相似文献   

4.
Summary Oligonucleotide-directed mutagenesis has been used to obtain specific changes in the penicillin acylase gene from Kluyvera citrophila. Wild-type and mutant proteins were purified and the kinetic constants for different substrates were determined. Mutations in Met168 highly decreased the specificity constant of the enzyme for penicillin G, penicillin V and phenylacetyl-4-aminobenzoic acid and the catalytic constant k cat for phenylacetyl-4-aminobenzoic acid. Likewise, the phenylmethylsulphonyl-fluoride sensitivity was significantly decreased. It is concluded that the 168 residue is involved in binding by interaction with the acid moiety of the substrate. A putative penicillin-binding domain was located in penicillin acylase by sequence homology with other penicillin-recognizing enzymes. Lys374 and His481, the conserved amino acid residues that are essential for catalysis in these enzymes, can be changed in penicillin acylase with no changes to the k cat and phenylmethylsulphonyl fluoride reactivity, but change the K m.The likelihood of the existence of this proposed penicillin binding site is discussed. The reported results might be used to alter the substrate specificity of penicillin acylase in order to hydrolyse substrates of industrial significance other than penicillins. Offprint requests to: I. Prieto  相似文献   

5.
A new penicillin acylase was isolated by cloning and functional screening of DNA isolated from a sand soil enrichment culture. Sequence analysis of this enzyme, PAS2, revealed homology to a group of prominent penicillin G acylases, including the intensively studied enzyme of Escherichia coli ATCC 11105. Accordingly, PAS2 was found to be an Ntn-hydrolase with an N-terminal serine as the catalytic nucleophile, located on its 61.9 kDa β-subunit. The α-subunit was shown to have a molecular mass of 25.5 kDa.To evaluate the biocatalytic performance of the new enzyme, the complex kinetic parameters α, β0, and γ were determined for the kinetically controlled synthesis of a number of important semi-synthetic penicillins and cephalosporins. While α is a measure for the relative affinity of the enzyme for the activated acyl donor (AD), β0 and γ quantify the efficiency of acyl-transfer to the β-lactam nucleophile. Compared to the penicillin acylase of E. coli, PAS2 showed superior potential for the synthesis of 6-aminopenicillanic acid (6-APA)-derived antibiotics, allowing the accumulation of up to 2.3-fold more target product at significantly higher conversion rates. In the synthesis of amoxicillin, for instance, 1.6-fold more antibiotic was formed using the new enzyme, making PAS2 an interesting candidate for biocatalytic application.  相似文献   

6.
In the present study, glutaryl-7-amino cephalosporanic acid acylase from Pseudomonas sp. strain 130 (CA130) was mutated to improve its enzymatic activity and stability. Based on the crystal structure of CA130, two series of amino acid residues, one from those directly involved in catalytic function and another from those putatively involved in surface charge, were selected as targets for site-directed mutagenesis. In the first series of experiments, several key residues in the substrate-binding pocket were substituted, and the genes were expressed in Escherichia coli for activity screening. Two of the mutants constructed, Y151αF and Q50βN, showed two- to threefold-increased catalytic efficiency (kcat/Km) compared to wild-type CA130. Their Km values were decreased by ca. 50%, and the kcat values increased to 14.4 and 16.9 s−1, respectively. The ability of these mutants to hydrolyze adipoyl 6-amino penicillinic acid was also improved. In the second series of mutagenesis, several mutants with enhanced stabilities were identified. Among them, R121βA and K198βA had a 30 to 58% longer half-life than wild-type CA130, and K198βA and D286βA showed an alkaline shift of optimal pH by about 1.0 to 2.0 pH units. To construct an engineered enzyme with the properties of both increased activity and stability, the double mutant Q50βN/K198βA was expressed. This enzyme was purified and immobilized for catalytic analysis. The immobilized mutant enzyme showed a 34.2% increase in specific activity compared to the immobilized wild-type CA130.  相似文献   

7.
DNA polymerase δ (pol δ) is one of the two main replicative polymerases in eukaryotes; it synthesizes the lagging DNA strand and also functions in DNA repair. In previous work, we demonstrated that heterozygous expression of the pol δ L604G variant in mice results in normal life span and no apparent phenotype, whereas a different substitution at the same position, L604K, is associated with shortened life span and accelerated carcinogenesis. Here, we report in vitro analysis of the homologous mutations at position Leu-606 in human pol δ. Four-subunit human pol δ variants that harbor or lack 3′ → 5′-exonucleolytic proofreading activity were purified from Escherichia coli. The pol δ L606G and L606K holoenzymes retain catalytic activity and processivity similar to that of wild type pol δ. pol δ L606G is highly error prone, incorporating single noncomplementary nucleotides at a high frequency during DNA synthesis, whereas pol δ L606K is extremely accurate, with a higher fidelity of single nucleotide incorporation by the active site than that of wild type pol δ. However, pol δ L606K is impaired in the bypass of DNA adducts, and the homologous variant in mouse embryonic fibroblasts results in a decreased rate of replication fork progression in vivo. These results indicate that different substitutions at a single active site residue in a eukaryotic polymerase can either increase or decrease the accuracy of synthesis relative to wild type and suggest that enhanced fidelity of base selection by a polymerase active site can result in impaired lesion bypass and delayed replication fork progression.  相似文献   

8.
The human DNA polymerase ε catalytic subunit consists of a 140-kDa N‐terminal domain that contains the catalytic activity and a 120-kDa C-terminal domain that binds to the other subunits and to exogenous peptides, including PCNA and MDM2. We report here that recombinant human MDM2 purified from insect cells or Escherichia coli stimulated the activity of DNA polymerase ε up to 10- and 40-fold, respectively, but not those of DNA polymerase β or Klenow fragment of E.coli DNA polymerase I. Kinetic studies indicated that MDM2 increased the maximum velocity of the reaction, but did not change substrate affinities. The stimulation depended upon the interaction of the N‐terminal 166 amino acid residues of MDM2 with the C-terminal domain of the full-length catalytic subunit, since the deletion of 166 amino acids from N‐terminal of MDM2 or the removal of the C-terminal domain of DNA polymerase ε by trypsin digestion or competition for binding to it by the addition of excess C-terminal fragment eliminated the stimulation. Since DNA polymerase ε appears to be involved in DNA replication, recombination and repair synthesis, we suggest that MDM2 binding to DNA polymerase ε might be part of a reconfiguration process that allows DNA polymerase ε to associate with repair/recombination proteins in response to DNA damage.  相似文献   

9.
Soluble low density lipoprotein receptor-related protein-1 (sLRP1) binds ∼70% of amyloid β-peptide (Aβ) in human plasma. In Alzheimer disease (AD) and individuals with mild cognitive impairment converting to AD, plasma sLRP1 levels are reduced and sLRP1 is oxidized, which results in diminished Aβ peripheral binding and higher levels of free Aβ in plasma. Experimental studies have shown that free circulating Aβ re-enters the brain and that sLRP1 and/or its recombinant wild type cluster IV (WT-LRPIV) prevent Aβ from entering the brain. Treatment of Alzheimer APPsw+/0 mice with WT-LRPIV has been shown to reduce brain Aβ pathology. In addition to Aβ, LRPIV binds multiple ligands. To enhance LRPIV binding for Aβ relative to other LRP1 ligands, we generated a library of LRPIV-derived fragments and full-length LRPIV variants with glycine replacing aspartic acid residues 3394, 3556, and 3674 in the calcium binding sites. Compared with WT-LRPIV, a lead LRPIV-D3674G mutant had 1.6- and 2.7-fold higher binding affinity for Aβ40 and Aβ42 in vitro, respectively, and a lower binding affinity for other LRP1 ligands (e.g. apolipoprotein E2, E3, and E4 (1.3–1.8-fold), tissue plasminogen activator (2.7-fold), matrix metalloproteinase-9 (4.1-fold), and Factor Xa (3.8-fold)). LRPIV-D3674G cleared mouse endogenous brain Aβ40 and Aβ42 25–27% better than WT-LRPIV. A 3-month subcutaneous treatment of APPsw+/0 mice with LRPIV-D3674G (40 μg/kg/day) reduced Aβ40 and Αβ42 levels in the hippocampus, cortex, and cerebrospinal fluid by 60–80% and improved cerebral blood flow responses and hippocampal function at 9 months of age. Thus, LRPIV-D3674G is an efficient new Aβ clearance therapy.  相似文献   

10.
The pva gene from Streptomyces lavendulae ATCC 13664, encoding a novel penicillin V acylase (SlPVA), has been isolated and characterized. The gene encodes an inactive precursor protein containing a secretion signal peptide that is activated by two internal autoproteolytic cleavages that release a 25-amino-acid linker peptide and two large domains of 18.79 kDa (α-subunit) and 60.09 kDa (β-subunit). Based on sequence alignments and the three-dimensional model of SlPVA, the enzyme contains a hydrophobic pocket involved in catalytic activity, including Serβ1, Hisβ23, Valβ70, and Asnβ272, which were confirmed by site-directed mutagenesis studies. The heterologous expression of pva in S. lividans led to the production of an extracellularly homogeneous heterodimeric enzyme at a 5-fold higher concentration (959 IU/liter) than in the original host and in a considerably shorter time. According to the catalytic properties of SlPVA, the enzyme must be classified as a new member of the Ntn-hydrolase superfamily, which belongs to a novel subfamily of acylases that recognize substrates with long hydrophobic acyl chains and have biotechnological applications in semisynthetic antifungal production.  相似文献   

11.
Penicillin G acylase (pac) gene was cloned into a stable asd + vector (pYA292) and expressed in Escherichia coli. This recombinant strain produced 1000 units penicillin G acylase g–1 cell dry wt, which is 23-fold more than that produced by parental Escherichia coli ATCC11105. This enzyme was purified to 16 units mg–1 protein by a novel two-step process.  相似文献   

12.
Further selection for a better strain capable of producing D(?)-α-aminobenzylpenicillin (APc) from 6-aminopenicillanic acid (6–APA) was carried out. Pseudomonas melanogenum KY 3987 was consequently selected as a new strain possessing an APc-specific penicillin acylase.

The acylase could synthesize APc in good yields from 6–APA and phenylglycine ester and form 6–APA only from APc, not from other common penicillins. Since the Pseudomonas acylase was found incapable of forming penicillin G (Pc–G) from 6–APA and phenylacetic acid, in contrast with E. coli and Kluyvera citrophila enzymes, the enzymatic hydrolysate of Pc–G, for example by K. citrophila cells, which contained 6–APA and phenylacetate, became employed as a source of 6–APA instead of purified 6–APA to synthesize APc by the cells of P. melanogenum.  相似文献   

13.
Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2''-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2 loops, play a role in determining cofactor preference.  相似文献   

14.
15.
A conserved structural module following the KMSKS catalytic loop exhibits α-α-β-α topology in class Ia and Ib aminoacyl-tRNA synthetases. However, the function of this domain has received little attention. Here, we describe the effect this module has on the aminoacylation and editing capacities of leucyl-tRNA synthetases (LeuRSs) by characterizing the key residues from various species. Mutation of highly conserved basic residues on the third α-helix of this domain impairs the affinity of LeuRS for the anticodon stem of tRNALeu, which decreases both aminoacylation and editing activities. Two glycine residues on this α-helix contribute to flexibility, leucine activation, and editing of LeuRS from Escherichia coli (EcLeuRS). Acidic residues on the β-strand enhance the editing activity of EcLeuRS and sense the size of the tRNALeu D-loop. Incorporation of these residues stimulates the tRNA-dependent editing activity of the chimeric minimalist enzyme Mycoplasma mobile LeuRS fused to the connective polypeptide 1 editing domain and leucine-specific domain from EcLeuRS. Together, these results reveal the stem contact-fold to be a functional as well as a structural linker between the catalytic site and the tRNA binding domain. Sequence comparison of the EcLeuRS stem contact-fold domain with editing-deficient enzymes suggests that key residues of this module have evolved an adaptive strategy to follow the editing functions of LeuRS.  相似文献   

16.
《Process Biochemistry》2010,45(3):390-398
A novel approach is proposed to prepare a set of immobilized derivatives of a enzyme covalently rigidified through different regions of its surface. Six different variants of penicillin G acylase (PGA) from Escherichia coli (which lacks Cys) were prepared by introducing a unique Cys residue via site-directed mutagenesis in six different enzyme regions which were rich in Lys residues. All variants exhibited a similar activity and stability compared to those of the native enzyme. Each variant was immobilized on supports having a low concentration of reactive disulfide moieties and a high concentration of poorly reactive epoxy groups. After immobilization at pH 7.0 by site-directed thiol-disulfide intermolecular exchange, derivatives were further incubated at pH 10.0 for 48 h to promote an additional intramolecular reaction between Lys residues of enzyme and epoxy groups of the support. The establishment of at least three covalent attachments per PGA molecule was determined for all immobilized enzyme variants. The different derivatives exhibited diverse stability against several distorting agents and different selectivity in two interesting reactions. The derivative of the PGA variant obtained by replacement of GlnB380 by Cys was the most stable against heat and organic cosolvents: it preserved 90% of the initial activity and was 30-fold more stable than soluble PGA. This derivative also exhibited an improved enantioselectivity in the hydrolysis of chiral esters (E was improved from 8 to 16) and in kinetically controlled synthesis of amides (synthetic yields were increased from 31 to 49%).  相似文献   

17.
A simple and versatile procedure to clone penicillin acylase genes has been developed. It involves the construction of a plasmid library in a host presenting an amino acid auxotrophy. Recombinant clones carrying the acylase gene were selected on a minimal medium containing instead of the required amino acid its phenylacetyl derivative. Penicillin acylase genes from Escherichia coli ATCC 11105 and Kluyvera citrophila ATCC 21285 have been cloned in E. coli using this technique. The restriction map of the region containing the E. coli penicillin acylase gene was found to be similar to that described by H. Mayer et al. (in: Plasmids of Medical, Environmental and Commercial Importance (Timmis, K.M. and Paler, A., eds.), pp. 459–470, Elsevier, Amsterdam 1979). K. citrophila acylase gene was located within a 3.0 kb Hind III-PvuI fragment. Some differences were observed between the partial restriction maps of both genes. In addition, the production of those clones carrying the E. coli acylase was more sensitive to the growth temperature than that of the clones containing the K. citrophila gene. Bacteria harbouring plasmids containing the K. citrophila acylase sequence were able to produce about 30 fold more enzyme than the parental strain. A 60 000 dalton polypeptide corresponding to the K. citrophila acylase has been detected in a maxicell system. The industrial applications of the procedure are discussed.  相似文献   

18.
Neonatal meningitis, caused by Escherichia coli K1, is a serious central nervous system disease. We have established that macrophages serve as permissive niches for E. coli K1 to multiply in the host and for attaining a threshold level of bacterial load, which is a prerequisite for the onset of the disease. Here, we demonstrate experimentally that three N-glycans in FcγRIa interact with OmpA of E. coli K1 for binding to and entering the macrophages. Adoptive transfer of FcγRIa−/− bone marrow-derived macrophages transfected with FcγRIa into FcγRIa−/− newborn mice renders them susceptible to E. coli K1-induced meningitis. In contrast, mice that received bone marrow-derived macrophages transfected with FcγRIa in which N-glycosylation sites 1, 4, and 5 are mutated to alanines exhibit resistance to E. coli K1 infection. Our molecular dynamics and simulation studies predict that N-glycan 5 exhibits strong binding at the barrel site of OmpA formed by loops 3 and 4, whereas N-glycans 1 and 4 interact with loops 1, 3, and 4 of OmpA at tip regions. Molecular modeling data also suggest no role for the IgG binding site in the invasion process. In agreement, experimental mutations in IgG binding site had no effect on the E. coli K1 entry into macrophages in vitro or on the onset of meningitis in newborn mice. Together, this integration of experimental and computational studies reveals how the N-glycans in FcγRIa interact with the OmpA of E. coli K1 for inducing the disease pathogenesis.  相似文献   

19.
The adsorption of penicillin G acylase (PGA) from B. megaterium and from Escherichia coli on a cationic resin, Streamline SP XL, was studied using both packed and expanded beds. Stability assays showed that penicillin acylases from the two sources presented high irreversible deactivation at pH 4.0 and 4.5, but remained stable at pH 4.8. Adsorption experiments performed in a packed bed (PB), in the pH range 4.8–5.8, showed highest adsorption yields at pH 4.8, for both enzymes. Using small expanded bed adsorption (EBA) columns, PGA was directly recovered and partially purified from E. coli crude extracts, E. coli homogenates, and from B. megaterium centrifuged broth in a single unit operation. Global recovery yields of 91.0, 55.0 and 7.4% and purification factors of 4.5-, 7.5- and 12.7-fold were achieved, respectively. The elution yields of penicillin acylase obtained with these cationic EBA processes when working with E. coli homogenate and B. megaterium centrifuged medium were of 100 and 52%, respectively. The comparison of adsorption capacities of E. coli penicillin acylase from crude extracts onto Streamline SP XL showed similar results for packed-bed and for expanded-bed modes. However, PGA adsorption yields for E. coli (homogenate) and B. megaterium (centrifuged medium) were substantially lower than the values obtained for E. coli crude extract, due to the competition of cell debris and other components present in the B. megaterium medium.  相似文献   

20.
The transmission of infectious prions into different host species requires compatible prion protein (PrP) primary structures, and even one heterologous residue at a pivotal position can block prion infection. Mapping the key amino acid positions that govern cross-species prion conversion has not yet been possible, although certain residue positions have been identified as restrictive, including residues in the β22 loop region of PrP. To further define how β22 residues impact conversion, we investigated residue substitutions in PrPC using an in vitro prion conversion assay. Within the β22 loop, a tyrosine residue at position 169 is strictly conserved among mammals, and transgenic mice expressing mouse PrP having the Y169G, S170N, and N174T substitutions resist prion infection. To better understand the structural requirements of specific residues for conversion initiated by mouse prions, we substituted a diverse array of amino acids at position 169 of PrP. We found that the substitution of glycine, leucine, or glutamine at position 169 reduced conversion by ∼75%. In contrast, replacing tyrosine 169 with either of the bulky, aromatic residues, phenylalanine or tryptophan, supported efficient prion conversion. We propose a model based on a requirement for tightly interdigitating complementary amino acid side chains within specific domains of adjacent PrP molecules, known as “steric zippers,” to explain these results. Collectively, these studies suggest that an aromatic residue at position 169 supports efficient prion conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号