共查询到20条相似文献,搜索用时 11 毫秒
1.
Tijmen J. Hommes Miriam H. van Lieshout Cornelis van ‘t Veer Sandrine Florquin Hester J. Bootsma Peter W. Hermans Alex F. de Vos Tom van der Poll 《PloS one》2015,10(12)
Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia. Nucleotide-binding oligomerization domain-containing (NOD) 2 is a pattern recognition receptor located in the cytosol of myeloid cells that is able to detect peptidoglycan fragments of S. pneumoniae. We here aimed to investigate the role of NOD2 in the host response during pneumococcal pneumonia. Phagocytosis of S. pneumoniae was studied in NOD2 deficient (Nod2
-/-) and wild-type (Wt) alveolar macrophages and neutrophils in vitro. In subsequent in vivo experiments Nod2
-/- and Wt mice were inoculated with serotype 2 S. pneumoniae (D39), an isogenic capsule locus deletion mutant (D39Δcps) or serotype 3 S. pneumoniae (6303) via the airways, and bacterial growth and dissemination and the lung inflammatory response were evaluated. Nod2
-/- alveolar macrophages and blood neutrophils displayed a reduced capacity to internalize pneumococci in vitro. During pneumonia caused by S. pneumoniae D39 Nod2
-/- mice were indistinguishable from Wt mice with regard to bacterial loads in lungs and distant organs, lung pathology and neutrophil recruitment. While Nod2
-/- and Wt mice also had similar bacterial loads after infection with the more virulent S. pneumoniae 6303 strain, Nod2
-/- mice displayed a reduced bacterial clearance of the normally avirulent unencapsulated D39Δcps strain. These results suggest that NOD2 does not contribute to host defense during pneumococcal pneumonia and that the pneumococcal capsule impairs recognition of S. pneumoniae by NOD2. 相似文献
2.
Zongmin Du Huiying Yang Yafang Tan Guang Tian Qingwen Zhang Yujun Cui Yanfeng Yan Xiaohong Wu Zuyun Chen Shiyang Cao Yujing Bi Yanping Han Xiaoyi Wang Yajun Song Ruifu Yan 《遗传学报》2014,41(7):379-396
Bacterial pathogens have evolved various mechanisms to modulate host immune responses for successful infection. In this study, RNA- sequencing technology was used to analyze the responses of human monocytes THP1 to Yersinia pestis infection. Over 6000 genes were differentially expressed over the 12 h infection. Kinetic responses of pathogen recognition receptor signaling pathways, apoptosis, antigen processing, and presentation pathway and coagulation system were analyzed in detail. Among them, RIG-I-like receptor (RLR) signaling pathway, which was established for antiviral defense, was significantly affected. Mice lacking MAVS, the adaptor of the RLR signaling pathway, were less sensitive to infection and exhibited lower IFN-13 production, higher Thl-type cytokines IFN-γ and IL-12 production, and lower Th2-type cytokines IL-4 and IL-13 production in the serum compared with wild-type mice. Moreover, infection of pathogenic bacteria other than E pestis also altered the expression of the RLR pathway, suggesting that the response of RLR pathway to bacterial infection is a universal mechanism. 相似文献
3.
Interleukin (IL)-1 signaling plays a critical role in intestinal immunology. Here, we report that the major population of intestinal lamina propria lymphocytes expressing IL-1 receptor 1 (IL-1R1) is the lymphoid tissue inducer (LTi)-like cell, a type of innate lymphoid cell. These cells are significant producers of IL-22, and this IL-22 production depends on IL-1R1 signaling. LTi-like cells are required for defense against Salmonella enterica serovar Typhimurium. Moreover, colonic LTi-like cell numbers depend on the presence of the intestinal microbiota. LTi-like cells require IL-1R1 for production of protective cytokines and confer protection in infectious colitis, and their cell numbers in the colon depend upon having a microbiome. 相似文献
4.
Li Z. Liu X. M. Li A. Y. Du X. X. Wang X. B. Liu J. X. Wang Z. G. Zhang Q. Q. Yu H. Y. 《Molecular Biology》2019,53(2):256-266
Molecular Biology - The type 2 interleukin-1 receptor (IL-1R2) is one of natural IL-1β singling inhibitors in mammals. We cloned and sequenced the IL-1R2 gene in V. variegatus (VvIL-1R2). The... 相似文献
5.
Ravindranath MH Gonzales A Soh D Nishimoto K Tam WY Bilchik A Morton DL O'Day S 《Biochemical and biophysical research communications》2001,283(2):369-373
We have developed a solid matrix immunoassay to determine the binding of interleukin-2 (IL-2) to specific gangliosides. The assay establishes that recombinant human IL-2 binds to ganglioside GD(1b) but not to any other gangliosides (GM(1), GM(2), GM(3), GD(1a), GD(2), GD(3), and GT(1b)). The binding varies with the ratio of GD1b and IL-2. This assay enables distinguishing the nature of the sugar moiety of the ganglioside recognized by IL-2 and establishes the dosimetry of the ganglioside-IL-2 interaction. Since rIL-2 is administered systematically into stage IV melanoma patients, we have examined 45 tumor biopsies for GD(1b) content. The incidence of GD(1b) in tumor biopsies is 51%. We postulate that GD(1b) associated on the tumor or in the circulation of cancer patients may bind to rIL-2 and prevent the availability of rIL-2 to augment antitumor-immune response. 相似文献
6.
Valdirene S. Muniz Renata Baptista-dos-Reis Claudia F. Benjamim Hilton A. Mata-Santos Alexandre S. Pyrrho Marcelo A. Strauch Paulo A. Melo Amanda R. R. Vicentino Juliana Silva-Paiva Christianne Bandeira-Melo Peter F. Weller Rodrigo T. Figueiredo Josiane S. Neves 《PloS one》2015,10(10)
Identifying new target molecules through which eosinophils secrete their stored proteins may reveal new therapeutic approaches for the control of eosinophilic disorders such as host immune responses to parasites. We have recently reported the expression of the purinergic P2Y12 receptor (P2Y12R) in human eosinophils; however, its functional role in this cell type and its involvement in eosinophilic inflammation remain unknown. Here, we investigated functional roles of P2Y12R in isolated human eosinophils and in a murine model of eosinophilic inflammation induced by Schistosoma mansoni (S. mansoni) infection. We found that adenosine 5’-diphosphate (ADP) induced human eosinophils to secrete eosinophil peroxidase (EPO) in a P2Y12R dependent manner. However, ADP did not interfere with human eosinophil apoptosis or chemotaxis in vitro. In vivo, C57Bl/6 mice were infected with cercariae of the Belo Horizonte strain of S. mansoni. Analyses performed 55 days post infection revealed that P2Y12R blockade reduced the granulomatous hepatic area and the eosinophilic infiltrate, collagen deposition and IL-13/IL-4 production in the liver without affecting the parasite oviposition. As found for humans, murine eosinophils also express the P2Y12R. P2Y12R inhibition increased blood eosinophilia, whereas it decreased the bone marrow eosinophil count. Our results suggest that P2Y12R has an important role in eosinophil EPO secretion and in establishing the inflammatory response in the course of a S. mansoni infection. 相似文献
7.
Noria Segueni Solenne Vigne Gaby Palmer Marie-Laure Bourigault Maria L. Olleros Dominique Vesin Irene Garcia Bernhard Ryffel Valérie F. J. Quesniaux Cem Gabay 《PloS one》2015,10(5)
IL-36 cytokines are members of the IL-1 family of cytokines that stimulate dendritic cells and T cells leading to enhanced T helper 1 responses in vitro and in vivo; however, their role in host defense has not been fully addressed thus far. The objective of this study was to examine the role of IL-36R signaling in the control of mycobacterial infection, using models of systemic attenuated M. bovis BCG infection and virulent aerogenic M. tuberculosis infection. IL-36γ expression was increased in the lung of M. bovis BCG infected mice. However, IL-36R deficient mice infected with M. bovis BCG showed similar survival and control of the infection as compared to wild-type mice, although their lung pathology and CXCL1 response were transiently different. While highly susceptible TNF-α deficient mice succumbed with overwhelming M. tuberculosis infection, and IL-1RI deficient mice showed intermediate susceptibility, IL-36R-deficient mice controlled the infection, with bacterial burden, lung inflammation and pathology, similar to wild-type controls. Therefore, IL-36R signaling has only limited influence in the control of mycobacterial infection. 相似文献
8.
Anne Rabes Stephanie Zimmermann Katrin Reppe Roland Lang Peter H. Seeberger Norbert Suttorp Martin Witzenrath Bernd Lepenies Bastian Opitz 《PloS one》2015,10(2)
The innate immune system employs C-type lectin receptors (CLRs) to recognize carbohydrate structures on pathogens and self-antigens. The Macrophage-inducible C-type lectin (Mincle) is a FcRγ-coupled CLR that was shown to bind to mycobacterial cord factor as well as certain fungal species. However, since CLR functions during bacterial infections have not yet been investigated thoroughly, we aimed to examine their function in Streptococcus pneumonia infection. Binding studies using a library of recombinantly expressed CLR-Fc fusion proteins indicated a specific, Ca2+-dependent, and serotype-specific binding of Mincle to S. pneumonia. Subsequent experiments with different Mincle-expressing cells as well as Mincle-deficient mice, however, revealed a limited role of this receptor in bacterial phagocytosis, neutrophil-mediated killing, cytokine production, and antibacterial immune response during pneumonia. Collectively, our results indicate that Mincle is able to recognize S. pneumonia but is not required for the anti-pneumococcal innate immune response. 相似文献
9.
Hubert Kolb Kathrin Lückemeyer Tim Heise Christian Herder Nanette C. Schloot Wolfgang Koenig Lutz Heinemann Stephan Martin 《PloS one》2013,8(8)
Background
The hypothesis was tested that the systemic immune milieu in recent-onset type 1 diabetes is associated with residual beta cell function and other metabolic patient characteristics.Methods and Findings
All patients (n = 89, 40% female) of the Diabetes and Atorvastatin (DIATOR) Trial were analyzed at recruitment, i.e. prior to receiving the study medication. Inclusion criteria were insulin dependent diabetes for 2 weeks to 3 months, age range 18–39 years, and islet cell autoantibodies. Blood samples were analyzed for 14 immune mediators by standard methods. Concentrations of all mediators correlated with at least one other mediator (p<0.05, Spearman correlation) giving rise to a network. Interleukin 1 receptor antagonist (IL1-RA) held a central position and was associated with both pro- and anti-inflammatory mediators. Further central elements were the pro-inflammatory mediators CRP and IL-6, the soluble adhesion molecules sICAM-1 and E-selectin, and MCP-4 which held a central position in the chemokine network. The two Th1-associated mediators IFNγ and IP-10 remained outside the network but correlated with each other. All correlations were positive (r = 0.25–0.72), i.e., high levels of pro-inflammatory mediators were accompanied by increased levels of anti-inflammatory mediators. IL-1RA was the only mediator associated with fasting and liquid mixed meal stimulated C-peptide concentrations (r = 0.31 and 0.24, p = 0.003 and 0.025, after adjustment for age, sex, BMI). There were associations between the immune mediator network and BMI (IL-1RA, CRP, IL-6, MCP-4, MIP-1ß) but few or no associations with HbA1c, insulin dose, lipid parameters, age or sex.Conclusions
In patients with recent onset type 1 diabetes, systemic acute phase proteins, cytokines, chemokines and soluble adhesion molecules form a network. Among the few central elements IL-1RA has a dominant role. IL-1RA is associated with all other groups of mediators and is the only mediator which correlates (positively) with residual beta cell function.Trial registration
ClinicalTrials.gov registration number: NCT00974740相似文献10.
† M. Kerry O'Banion †Janice C. Miller †Julia W. Chang ‡Mitchell D. Kaplan †Paul D. Coleman 《Journal of neurochemistry》1996,66(6):2532-2540
Abstract: Activation of glial cells and the consequent release of cytokines, proteins, and other intercellular signaling molecules is a well-recognized phenomenon in brain injury and neurodegenerative disease. We and others have previously described an inducible prostaglandin G/H synthase, known as PGHS-2 or cyclooxygenase-2, that is up-regulated in many cell systems by cytokines and growth factors and down-regulated by glucocorticoid hormones. In cultured mouse astrocytes we observed increased production of prostaglandin E2 (PGE2 ) after stimulation with either interleukin-1β (IL-1β) or the protein kinase C activator phorbol 12-myristate 13-acetate (TPA). This increase in PGE2 content was blocked by pretreatment with dexamethasone and correlated with increases in cyclooxygenase activity measured at 4 h. Northern blots revealed concomitant increases in PGHS-2 mRNA levels that peaked at 2 h and were dependent on the dosage of IL-1β. Dexamethasone inhibited this induction of PGHS-2 mRNA by IL-1β. TPA, basic fibroblast growth factor, and the proinflammatory factors tumor necrosis factor α and lipopolysaccharide, but not interleukin-6, also stimulated PGHS-2 mRNA expression. Relative to IL-1β, the greater increases in PGE2 production and cyclooxygenase activity caused by TPA correlated with a greater induction of PGHS-2 mRNA. Furthermore, NS-398, a specific inhibitor of cyclooxygenase-2, blocked >80% of the cyclooxygenase activity in TPA-treated astrocytes. These findings indicate that increased expression of PGHS-2 contributes to prostaglandin production in cultured astrocytes exposed to cytokines and other factors. 相似文献
11.
Background
Since activation of the PI3K/(protein kinase B; PKB/akt) pathway has been shown to alter muscle mass and growth, the aim of this study was to determine whether resistance exercise increased insulin like growth factor (IGF) I/phosphoinositide 3-kinase (PI3K) signalling and whether altering PI(3,4,5)P3 metabolism genetically would increase load induced muscle growth.Methodology/Principal Findings
Acute and chronic resistance exercise in wild type and muscle specific PTEN knockout mice were used to address the role of PI(3,4,5)P3 regulation in the development of skeletal muscle hypertrophy. Acute resistance exercise did not increase either IGF-1 receptor phosphorylation or IRS1/2 associated p85. Since insulin/IGF signalling to PI3K was unchanged, we next sought to determine whether inactivation of PTEN played a role in load-induced muscle growth. Muscle specific knockout of PTEN resulted in small but significant increases in heart (PTEN+/+ = 5.00±0.02 mg/g, PTEN−/− = 5.50±0.09 mg/g), and TA (PTEN+/+ = 1.74±0.04 mg/g, PTEN−/− = 1.89 ±0.03) muscle mass, while the GTN, SOL, EDL and PLN remain unchanged. Following ablation, hypertrophy of the PLN, SOL or EDL muscles was similar between PTEN−/− and PTEN+/+ animals. Even though there were some changes in overload-induced PKB and S6K1 phosphorylation, 1 hr following acute resistance exercise there was no difference in the phosphorylation state of S6K1 Thr389 between genotypes.Conclusions/Significance
These data suggest that physiological loading does not lead to the enhanced activation of the PI3K/PKB/mTORC1 axis and that neither PI3K activation nor PTEN, and by extension PI(3,4,5)P3 levels, play a significant role in adult skeletal muscle growth. 相似文献12.
Breast cancer is the most common non-cutaneous malignancy in American women, and better preventative strategies are needed. Epidemiological and laboratory studies point to vitamin D3 as a promising chemopreventative agent for breast cancer. Vitamin D3 metabolites induce anti-proliferative effects in breast cancer cells in vitro and in vivo, but few studies have investigated their effects in normal mammary epithelial cells. We hypothesized that 1,25(OH)2D3, the metabolically active form of vitamin D3, is growth suppressive in normal mouse mammary epithelial cells. In addition, we have previously established a role for the cytokine interleukin-1 alpha (IL1α) in the anti-proliferative effects of 1,25(OH)2D3 in normal prostate cells, and so we hypothesized that IL1α is involved in the 1,25(OH)2D3 response in mammary cells. Evaluation of cell viability, clonogenicity, senescence, and induction of cell cycle regulators p21 and p27 supported an anti-proliferative role for 1,25(OH)2D3 in mammary epithelial cells. Furthermore, 1,25(OH)2D3 increased the intracellular expression of IL1α, which was necessary for the anti-proliferative effects of 1,25(OH)2D3 in mammary cells. Together, these findings support the chemopreventative potential of vitamin D3 in the mammary gland and present a role for IL1α in regulation of mammary cell proliferation by 1,25(OH)2D3. 相似文献
13.
Dominik Bergis Valentin Kassis Annika Ranglack Verena Koeberle Albrecht Piiper Bernd Kronenberger Stefan Zeuzem Oliver Waidmann Heinfried H Radeke 《Translational oncology》2013,6(3):311-318
BACKGROUND: Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor, usually arises in the setting of liver cirrhosis (LC), and has a poor prognosis. The recently discovered Th2-cytokine interleukin-33 (IL-33) is a possible mediator in pancreatic and gastric carcinogeneses. IL-33 binds to its receptor and to soluble ST2 (sST2), which thereby acts as a regulator. The role of IL-33 and sST2 in HCC has not been elucidated yet. METHODS: We conducted a case-control study with 130 patients and 50 healthy controls (HCs). Sixty-five patients suffered from HCC and 65 patients had LC without HCC. We assessed serum IL-33 and sST2 levels and their association with established prognostic scores, liver function parameters, and overall survival (OS). RESULTS: No significant difference in IL-33 serum levels was found in HCC compared to LC and HCs. IL-33 levels did not correlate with OS, liver function parameters, the Model for End-Stage Liver Disease (MELD) score, or the Cancer of the Liver Italian Program (CLIP) score. sST2 levels were significantly elevated in LC and HCC patients compared to HCs (P < .0001). Mean sST2 levels in LC were higher than in HCC (P < .0001), but a significant association with OS was only observed in the HCC group (P = .003). sST2 in HCC correlated with the CLIP score, the MELD score, and liver function parameters. CONCLUSION: In the present study, the serum concentration of sST2 was associated with OS of HCC. Therefore, sST2 may be considered as a new prognostic marker in HCC and is worth further evaluation. 相似文献
14.
E Ellertsdottir PR Berthold M Bouzaffour P Dufourcq V Trayer C Gauron S Vriz M Affolter C Rampon 《PloS one》2012,7(7):e42131
Thrombin receptor, F2R or PAR1 is a G-protein coupled receptor, located in the membrane of endothelial cells. It has been initially found to transduce signals in hemostasis, but recently also known to act in cancer and in vascular development. Mouse embryos lacking PAR1 function die from hemorrhages with varying frequency at midgestation. We have performed a survey of potential PAR1 homologs in the zebrafish genome and identified a teleost ortholog of mammalian PAR1. Knockdown of par1 function in zebrafish embryos demonstrates a requirement for Par1 in cardio-vascular development. Furthermore, we show that function of Par1 requires the presence of a phylogenetically conserved proteolytic cleavage site and a second intracellular domain. Altogether our results demonstrate a high degree of conservation of PAR1 proteins in the vertebrate lineage in respect to amino acid sequence as well as protein function. 相似文献
15.
Ahmed Achouiti Alex F. de Vos Cornelis van ‘t Veer Sandrine Florquin Michael W. Tanck Peter P. Nawroth Angelika Bierhaus Tom van der Poll Marieke A. D. van Zoelen 《PloS one》2016,11(1)
Klebsiella species is the second most commonly isolated gram-negative organism in sepsis and a frequent causative pathogen in pneumonia. The receptor for advanced glycation end products (RAGE) is expressed on different cell types and plays a key role in diverse inflammatory responses. We here aimed to investigate the role of RAGE in the host response to Klebsiella (K.) pneumoniae pneumonia and intransally inoculated rage gene deficient (RAGE-/-) and normal wild-type (Wt) mice with K. pneumoniae. Klebsiella pneumonia resulted in an increased pulmonary expression of RAGE. Furthermore, the high-affinity RAGE ligand high mobility group box-1 was upregulated during K. pneumoniae pneumonia. RAGE deficiency impaired host defense as reflected by a worsened survival, increased bacterial outgrowth and dissemination in RAGE-/- mice. RAGE-/- neutrophils showed a diminished phagocytosing capacity of live K. pneumoniae in vitro. Relative to Wt mice, RAGE-/- mice demonstrated similar lung inflammation, and slightly elevated—if any—cytokine and chemokine levels and unchanged hepatocellular injury. In addition, RAGE-/- mice displayed an unaltered response to intranasally instilled Klebsiella lipopolysaccharide (LPS) with respect to pulmonary cell recruitment and local release of cytokines and chemokines. These data suggest that (endogenous) RAGE protects against K. pneumoniae pneumonia. Also, they demonstrate that RAGE contributes to an effective antibacterial defense during K. pneumoniae pneumonia, at least partly via its participation in the phagocytic properties of professional granulocytes. Additionally, our results indicate that RAGE is not essential for the induction of a local and systemic inflammatory response to either intact Klebsiella or Klebsiella LPS. 相似文献
16.
Tina Tze-Tsang Tang John D. Badger II Paul A. Roche Katherine W. Roche 《The Journal of biological chemistry》2010,285(27):20975-20981
N-Methyl-d-aspartate (NMDA) receptors are expressed at excitatory synapses throughout the brain and are essential for neuronal development and synaptic plasticity. Functional NMDA receptors are tetramers, typically composed of NR1 and NR2 subunits (NR2A–D). NR2A and NR2B are expressed in the forebrain and are thought to assemble as diheteromers (NR1/NR2A, NR1/NR2B) and triheteromers (NR1/NR2A/NR2B). NR2A and NR2B contain cytosolic domains that regulate distinct postendocytic sorting events, with NR2A sorting predominantly into the degradation pathway, and NR2B preferentially trafficking through the recycling pathway. However, the interplay between these two subunits remains an open question. We have now developed a novel approach based on the dimeric feature of the α- and β-chains of the human major histocompatibility complex class II molecule. We created chimeras of α- and β-chains with the NR2A and NR2B C termini and evaluated endocytosis of dimers. Like chimeric proteins containing only a single NR2A or NR2B C-terminal domain, major histocompatibility complex class II-NR2A homodimers sort predominantly to late endosomes, whereas NR2B homodimers traffic to recycling endosomes. Interestingly, NR2A/NR2B heterodimers traffic preferentially through the recycling pathway, and NR2B is dominant in regulating dimer trafficking in both heterologous cells and neurons. In addition, the recycling of NR2B-containing NMDARs in wild-type neurons is not significantly different from NR2A−/− neurons. These data support a dominant role for NR2B in regulating the trafficking of triheteromeric NMDARs in vivo. Furthermore, our molecular approach allows for the direct and selective evaluation of dimeric assemblies and can be used to define dominant trafficking domains in other multisubunit protein complexes. 相似文献
17.
Greg A. Snyder Daniel Deredge Anna Waldhuber Theresa Fresquez David Z. Wilkins Patrick T. Smith Susi Durr Christine Cirl Jiansheng Jiang William Jennings Timothy Luchetti Nathaniel Snyder Eric J. Sundberg Patrick Wintrode Thomas Miethke T. Sam Xiao 《The Journal of biological chemistry》2014,289(2):669-679
The Toll/IL-1 receptor (TIR) domains are crucial innate immune signaling modules. Microbial TIR domain-containing proteins inhibit Toll-like receptor (TLR) signaling through molecular mimicry. The TIR domain-containing protein TcpB from Brucella inhibits TLR signaling through interaction with host adaptor proteins TIRAP/Mal and MyD88. To characterize the microbial mimicry of host proteins, we have determined the X-ray crystal structures of the TIR domains from the Brucella protein TcpB and the host adaptor protein TIRAP. We have further characterized homotypic interactions of TcpB using hydrogen/deuterium exchange mass spectrometry and heterotypic TcpB and TIRAP interaction by co-immunoprecipitation and NF-κB reporter assays. The crystal structure of the TcpB TIR domain reveals the microtubule-binding site encompassing the BB loop as well as a symmetrical dimer mediated by the DD and EE loops. This dimerization interface is validated by peptide mapping through hydrogen/deuterium exchange mass spectrometry. The human TIRAP TIR domain crystal structure reveals a unique N-terminal TIR domain fold containing a disulfide bond formed by Cys89 and Cys134. A comparison between the TcpB and TIRAP crystal structures reveals substantial conformational differences in the region that encompasses the BB loop. These findings underscore the similarities and differences in the molecular features found in the microbial and host TIR domains, which suggests mechanisms of bacterial mimicry of host signaling adaptor proteins, such as TIRAP. 相似文献
18.
Carlos Gorbea Kimberly A. Makar Matthias Pauschinger Gregory Pratt Jeathrina L. F. Bersola Jacquelin Varela Ryan M. David Lori Banks Chien-Hua Huang Hua Li Heinz-Peter Schultheiss Jeffrey A. Towbin Jesús G. Vallejo Neil E. Bowles 《The Journal of biological chemistry》2010,285(30):23208-23223
The innate antiviral response is mediated, at least in part, by Toll-like receptors (TLRs). TLR3 signaling is activated in response to viral infection, and the absence of TLR3 in mice significantly increases mortality after infection with enteroviruses that cause myocarditis and/or dilated cardiomyopathy. We screened TLR3 in patients diagnosed with enteroviral myocarditis/cardiomyopathy and identified a rare variant in one patient as well as a significantly increased occurrence of a common polymorphism compared with controls. Expression of either variant resulted in significantly reduced TLR3-mediated signaling after stimulation with synthetic double-stranded RNA. Furthermore, Coxsackievirus B3 infection of cell lines expressing mutated TLR3 abrogated activation of the type I interferon pathway, leading to increased viral replication. TLR3-mediated type I interferon signaling required cellular autophagy and was suppressed by 3-methyladenine and bafilomycin A1, by inhibitors of lysosomal proteolysis, and by reduced expression of Beclin 1, Atg5, or microtubule-associated protein 1 light chain 3β (MAP1LC3β). However, TLR3-mediated signaling was restored upon exogenous expression of Beclin 1 or a variant MAP1LC3β fusion protein refractory to RNA interference. These data suggest that individuals harboring these variants may have a blunted innate immune response to enteroviral infection, leading to reduced viral clearance and an increased risk of cardiac pathology. 相似文献
19.
Lasse Ramsgaard Judson M. Englert Jacob Tobolewski Lauren Tomai Cheryl L. Fattman Adriana S. Leme A. Murat Kaynar Steven D. Shapiro Jan J. Enghild Tim D. Oury 《PloS one》2010,5(3)
Background
The role of the receptor for advanced glycation end-products (RAGE) has been shown to differ in two different mouse models of asbestos and bleomycin induced pulmonary fibrosis. RAGE knockout (KO) mice get worse fibrosis when challenged with asbestos, whereas in the bleomycin model they are largely protected against fibrosis. In the current study the role of RAGE in a mouse model of silica induced pulmonary fibrosis was investigated.Methodology/Principal Findings
Wild type (WT) and RAGE KO mice received a single intratracheal (i.t.) instillation of silica in saline or saline alone as vehicle control. Fourteen days after treatment mice were subjected to a lung mechanistic study and the lungs were lavaged and inflammatory cells, protein and TGF-β levels in lavage fluid determined. Lungs were subsequently either fixed for histology or excised for biochemical assessment of fibrosis and determination of RAGE protein- and mRNA levels. There was no difference in the inflammatory response or degree of fibrosis (hydroxyproline levels) in the lungs between WT and RAGE KO mice after silica injury. However, histologically the fibrotic lesions in the RAGE KO mice had a more diffuse alveolar septal fibrosis compared to the nodular fibrosis in WT mice. Furthermore, RAGE KO mice had a significantly higher histologic score, a measure of affected areas of the lung, compared to WT silica treated mice. A lung mechanistic study revealed a significant decrease in lung function after silica compared to control, but no difference between WT and RAGE KO. While a dose response study showed similar degrees of fibrosis after silica treatment in the two strains, the RAGE KO mice had some differences in the inflammatory response compared to WT mice.Conclusions/Significance
Aside from the difference in the fibrotic pattern, these studies showed no indicators of RAGE having an effect on the severity of pulmonary fibrosis following silica injury. 相似文献20.
Role of the Toll Like Receptor (TLR) Radical Cycle in Chronic Inflammation: Possible Treatments Targeting the TLR4 Pathway 总被引:1,自引:0,他引:1
Activation of the Toll-like receptor 4 (TLR4) complex, a receptor of the innate immune system, may underpin the pathophysiology of many human diseases, including asthma, cardiovascular disorder, diabetes, obesity, metabolic syndrome, autoimmune disorders, neuroinflammatory disorders, schizophrenia, bipolar disorder, autism, clinical depression, chronic fatigue syndrome, alcohol abuse, and toluene inhalation. TLRs are pattern recognition receptors that recognize damage-associated molecular patterns and pathogen-associated molecular patterns, including lipopolysaccharide (LPS) from gram-negative bacteria. Here we focus on the environmental factors, which are known to trigger TLR4, e.g., ozone, atmosphere particulate matter, long-lived reactive oxygen intermediate, pentachlorophenol, ionizing radiation, and toluene. Activation of the TLR4 pathways may cause chronic inflammation and increased production of reactive oxygen and nitrogen species (ROS/RNS) and oxidative and nitrosative stress and therefore TLR-related diseases. This implies that drugs or substances that modify these pathways may prevent or improve the abovementioned diseases. Here we review some of the most promising drugs and agents that have the potential to attenuate TLR-mediated inflammation, e.g., anti-LPS strategies that aim to neutralize LPS (synthetic anti-LPS peptides and recombinant factor C) and TLR4/MyD88 antagonists, including eritoran, CyP, EM-163, epigallocatechin-3-gallate, 6-shogaol, cinnamon extract, N-acetylcysteine, melatonin, and molecular hydrogen. The authors posit that activation of the TLR radical (ROS/RNS) cycle is a common pathway underpinning many “civilization” disorders and that targeting the TLR radical cycle may be an effective method to treat many inflammatory disorders. 相似文献