首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The progesterone analog medroxyprogesterone acetate (MPA) is widely used as a hormone replacement therapy in postmenopausal women and as contraceptive. However, prolonged administration of MPA is associated with increased incidence of breast cancer through ill-defined mechanisms. Here, we explored whether exposure to MPA during mammary tumor growth affects myeloid-derived suppressor cells (MDSCs; CD11b+Gr-1+, mostly CD11b+Ly6G+Ly6Cint and CD11b+Ly6G?Ly6Chigh cells) and natural killer (NK) cells, potentially restraining tumor immunosurveillance. We used the highly metastatic 4T1 breast tumor (which does not express the classical progesterone receptor and expands MDSCs) to challenge BALB/c mice in the absence or in the presence of MPA. We observed that MPA promoted the accumulation of NK cells in spleens of tumor-bearing mice, but with reduced degranulation ability and in vivo cytotoxic activity. Simultaneously, MPA induced a preferential expansion of CD11b+Ly6G+Ly6Cint cells in spleen and bone marrow of 4T1 tumor-bearing mice. In vitro, MPA promoted nuclear mobilization of the glucocorticoid receptor (GR) in 4T1 cells and endowed these cells with the ability to promote a preferential differentiation of bone marrow cells into CD11b+Ly6G+Ly6Cint cells that displayed suppressive activity on NK cell degranulation. Sorted CD11b+Gr-1+ cells from MPA-treated tumor-bearing mice exhibited higher suppressive activity on NK cell degranulation than CD11b+Gr-1+ cells from vehicle-treated tumor-bearing mice. Thus, MPA, acting through the GR, endows tumor cells with an enhanced capacity to expand CD11b+Ly6G+Ly6Cint cells that subsequently display a stronger suppression of NK cell-mediated anti-tumor immunity. Our results describe an alternative mechanism by which MPA may affect immunosurveillance and have potential implication in breast cancer incidence.  相似文献   

2.
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that regulate immune responses in cancer and various pathological conditions. However, the phenotypic and functional heterogeneity of human MDSCs represents a major hurdle for the development of therapeutic strategies targeting or regulating MDSCs in tumor progression, inflammation, and graft-versus-host disease (GVHD). We previously shown that circulating HLA-DR-CD14+ monocytic MDSCs are a major contributor to clinical outcomes after allogeneic hematopoietic stem cell transplantation (allo-HSCT). In this study, we identified, using high-throughput screening, a set of surface markers that are strongly expressed in HLA-DR-CD14+ monocytic MDSCs isolated from the peripheral blood (PB) of patients receiving allo-HSCT. Subsequent experiments showed the consistent dominant expression of CD1d in monocytic MDSCs of allo-HSCT PB in comparison with granulocytic MDSCs. In addition, CD1d-expressing cells isolated from PB of allo-HSCT patients showed the suppressive activity of T cell proliferation and higher expression of MyD88 and IDO compared with CD1d? cells. Our results suggest that CD1d could be a valuable marker for further therapeutic evaluation of human monocytic MDSCs for immune-related diseases, including GVHD.  相似文献   

3.
In this study, we studied the long-term proliferation trajectory of myeloid-derived suppressor cells (MDSCs) in murine sepsis model and investigated whether swertianolin could modulate the immunosuppressive function of MDSCs. A murine sepsis model was established by cecal ligation and perforation (CLP), according to the Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS) guidelines. The bone marrow and spleen of the mice were collected at 24 h, 72 h, 7 and 15 d after sepsis induction. The proportions of monocytic- MDSCs (M-MDSCs; CD11b+LY6GLY6Chi) and granulocytic-MDSCs (G-MDSC, CD11b+ Ly6G+ Ly6Clow) were analyzed by flow cytometry. Then, we have investigated whether swertianolin could modulate the immunosuppressive function of MDSCs in in vitro experiments. G-MDSCs and M-MDSCs increased acutely after sepsis with high levels sustained over a long period of time. G-MDSCs were the main subtype identified in the murine model of sepsis with polymicrobial peritonitis. Furthermore, it was found that swertianolin reduced significantly interleukin-10 (IL-10), nitric oxide (NO), reactive oxygen species (ROS), and arginase production in MDSCs, while reducing MDSC proliferation and promoting MDSC differentiation into dendritic cells. Swertianolin also improved T-cell activity by blocking the immunosuppressive effect of MDSCs. Both subsets of MDSCs significantly increased in the bone marrow and spleen of the mice with sepsis, with GMDSCs being the main subtype identified. Swertianolin effectively regulated the functions of MDSCs and reduced immune suppression.Key words: Sepsis, myeloid-derived suppressor cells (MDSCs), immunosuppression, swertianolin  相似文献   

4.
5.
Obesity is one of the leading risk factors for developing renal cell carcinoma, an immunogenic tumor that is treated clinically with immunostimulatory therapies. Currently, however, the mechanisms linking obesity with renal cancer incidence are unclear. Using a model of diet-induced obesity, we found that obese BALB/c mice with orthotopic renal tumors had increased total frequencies of myeloid-derived suppressor cells (MDSC) in renal tumors and spleens by d14 post-tumor challenge, relative to lean counterparts. Renal tumors from obese mice had elevated concentrations of the known myeloid cell chemoattractant CCL2, which was produced locally by increased percentages of dendritic cells, macrophages, B cells, and CD45- cells in tumors. MDSC expression of the CCL2 receptor, CCR2, was unaltered by obesity but greater percentages of CCR2+ MDSCs were present in renal tumors from obese mice. Of note, the intracellular arginase levels and per-cell suppressive capacities of tumor-infiltrating and splenic MDSCs were unchanged in obese mice relative to lean controls. Thus, our findings suggest that obesity promotes renal tumor progression via development of a robust immunosuppressive environment that is characterized by heightened local and systemic MDSC prevalence. Targeted intervention of the CCL2/CCR2 pathway may facilitate immune-mediated renal tumor clearance in the obese.  相似文献   

6.
7.
Myeloid-derived suppressor cells (MDSCs) have been characterized in several disease settings, especially in many tumor systems. Compared to their involvement in tumor microenvironments, however, MDSCs have been less well studied in their responses to infectious disease processes, in particular to retroviruses that induce immunodeficiency. Here, we demonstrate for the first time the development of a highly immunosuppressive MDSC population that is dependent on infection by the LP-BM5 retrovirus, which causes murine acquired immunodeficiency. These MDSCs express a cell surface marker signature (CD11b+ Gr-1+ Ly6C+) characteristic of monocyte-type MDSCs. Such MDSCs profoundly inhibit immune responsiveness by a cell dose- and substantially inducible nitric oxide synthase (iNOS)-dependent mechanism that is independent of arginase activity, PD-1–PD-L1 expression, and interleukin 10 (IL-10) production. These MDSCs display levels of immunosuppressive function in parallel with the extent of disease in LP-BM5-infected wild-type (w.t.) versus knockout mouse strains that are differentially susceptible to pathogenesis. These MDSCs suppressed not only T-cell but also B-cell responses, which are an understudied target for MDSC inhibition. The MDSC immunosuppression of B-cell responses was confirmed by the use of purified B responder cells, multiple B-cell stimuli, and independent assays measuring B-cell expansion. Retroviral load measurements indicated that the suppressive Ly6Glow/± Ly6C+ CD11b+-enriched MDSC subset was positive for LP-BM5, albeit at a significantly lower level than that of nonfractionated splenocytes from LP-BM5-infected mice. These results, including the strong direct MDSC inhibition of B-cell responsiveness, are novel for murine retrovirus-induced immunosuppression and, as this broadly suppressive function mirrors that of the LP-BM5-induced disease syndrome, support a possible pathogenic effector role for these retrovirus-induced MDSCs.  相似文献   

8.
It has been shown that allogeneic intra-bone marrow–bone marrow transplantation (IBM-BMT) plus thymus transplantation (TT) is effective in treating recipients with malignant tumors. Although TT increases the percentage of T cells in the early term after BMT, the myeloid-derived suppressor cells (MDSCs) are still the dominant population. We used the Gr-1 Ab to deplete the granulocytic MDSCs (G-MDSCs) in tumor-bearing mice that had received BMT+TT. Two weeks after the BMT, the mice injected with Gr-1 Ab showed smaller tumors than those in the control group. In addition, Gr-1 Ab significantly increased the percentages and numbers of CD4+ and CD8+ T cells, and decreased the percentages and numbers of MDSCs and G-MDSCs. No side effects of the Gr-1 Ab on recipient or donor thymus were observed. These findings indicate that Gr-1 Ab administered after BMT+TT may enhance the effectiveness of tumor suppression.  相似文献   

9.
Metastasis is the most devastating aspect of cancer, however we know very little about the mechanisms of local invasion, the earliest step of metastasis. During tumor growth CD11b+Gr1+ cells, known also as MDSCs, have been shown to promote tumor progression by a wide spectrum of effects that suppress the anti-tumor immune response. In addition to immunosuppression, CD11b+Gr1+ cells promote metastasis by mechanisms that are currently unknown. CD11b+Gr1+ cells localize near fibroblasts, which remodel the ECM and leave tracks for collective cell migration of carcinoma cells. In this study we discovered that CD11b+Gr1+ cells promote invasion of mammary carcinoma cells by increasing fibroblast migration. This effect was directed by secreted factors derived from CD11b+Gr1+ cells. We have identified several CD11b+Gr1+ cell secreted proteins that activate fibroblast migration, including CXCL11, CXCL15, FGF2, IGF-I, IL1Ra, Resistin, and Shh. The combination of CXCL11 and FGF2 had the strongest effect on fibroblast migration that is associated with Akt1 and ERK1/2 phosphorylation. Analysis of subsets of CD11b+Gr1+ cells identified that CD11b+Ly6ChighLy6Glow cells increase fibroblast migration more than other myeloid cell populations. Additionally, tumor-derived CD11b+Gr1+ cells promote fibroblast migration more than splenic CD11b+Gr1+ cells of tumor-bearing mice. While TGFβ signaling in fibroblasts does not regulate their migration toward CD11b+Gr1+ cells, however deletion of TGFβ receptor II on CD11b+Gr1+ cells downregulates CXCL11, Shh, IGF1 and FGF2 resulting in reduced fibroblast migration. These studies show that TGFβ signaling in CD11b+Gr1+ cells promotes fibroblast directed carcinoma invasion and suggests that perivascular CD11b+Ly6ChighLy6Glow cells may be the stimulus for localized invasion leading to metastasis.  相似文献   

10.
Metastatic tumors are mainly composed of neoplastic cells escaping from the primary tumor and inflammatory cells egressing from bone marrow. Cancer cell and inflammatory cell are remained in the state of immaturity during migration to distant organs. Here, we show that ADRB3 is crucial in cell mobilization and differentiation. Immunohistochemistry revealed ADRB3 expression is significantly more frequent in breast cancer tissues than in adjacent noncancerous tissues (92.1% vs. 31.5%). Expression of ADRB3 correlated with malignant degree, TNM stage and poor prognosis. Moreover, ADRB3 expression was markedly high in activated disseminated tumor cells, myeloid-derived suppressor cells (MDSCs), lymphocytes and neutrophil extracellular traps of patients. Importantly, ADRB3 promoted the expansion of MDSC through stimulation of bone marrow mobilization and inhibiting of the differentiation of immature myeloid cells. Furthermore, ADRB3 promoted MCF-7 cells proliferation and inhibited transdifferentiation into adipocyte-like cell by activating mTOR pathway. Ultimately, the MDSC-deficient phenotype of ADRB3 -/- PyMT mice was associated with impairment of mammary tumorigenesis and reduction in pulmonary metastasis. Collectively, ADRB3 promotes metastasis by inducing mobilization and inhibiting differentiation of both breast cancer cells and MDSCs.Subject terms: Breast cancer, Breast cancer  相似文献   

11.
The role of myeloid derived suppressor cells (MDSCs) in promoting tumorigenesis is well-established, and significant effort is being made to further characterize surface markers on MDSCs both for better diagnosis and as potential targets for therapy. Here we show that the B cell receptor adaptor molecule CD79a is unexpectedly expressed on immature bone marrow myeloid cells, and is upregulated on MDSCs generated in multiple different mouse models of metastatic but not non-metastatic cancer. CD79a on MDSCs is upregulated and activated in response to soluble factors secreted by tumor cells. Activation of CD79a on mouse MDSCs, by crosslinking with a specific antibody, maintained their immature phenotype (CD11b+Gr1+), enhanced their migration, increased their suppressive effect on T cell proliferation, and increased secretion of pro-tumorigenic cytokines such as IL-6 and CCL22. Furthermore, crosslinking CD79a on myeloid cells activated signaling through Syk, BLNK, ERK and STAT3 phosphorylation. In vivo, CD79+ myeloid cells showed enhanced ability to promote primary tumor growth and metastasis. Finally we demonstrate that CD79a is upregulated on circulating myeloid cells from lung cancer patients, and that CD79a+ myeloid cells infiltrate human breast tumors. We propose that CD79a plays a functional role in the tumor promoting effects of myeloid cells, and may represent a novel target for cancer therapy.  相似文献   

12.
Abstract: Stable introduction of therapeutic genes into hematopoietic stem cells has the potential to reconstitute immunity in individuals with HIV infection. However, many important questions regarding the safety and efficacy of this approach remain unanswered and may be addressed in a non-human primate model. To facilitate evaluation of expression of foreign genes in T cells derived from transduced hematopoietic progenitor cells, we have established a culture system that supports the differentiation of rhesus macaque and human CD34+ bone marrow derived cells into mature T cells. Thymic stromal monolayers were prepared from the adherent cell fraction of collagenase digested fetal or neonatal thymus. After 10–14 days, purified rhesus CD34+ bone marrow-derived cells cultured on thymic stromal monolayers yielded CD3+CD4+CD8+, CD3+CD4+CD8?, and CD3+CD4?CD8+ cells. Following stimulation with mitogens, these T cells derived from CD34+ cells could be expanded over 1,000-fold and maintained in culture for up to 20 weeks. We next evaluated the ability of rhesus CD34+ cells transduced with a retroviral vector containing the marker gene neo to undergo in vitro T cell differentiation. CD34+ cells transduced in the presence of bone marrow stroma and then cultured on rhesus thymic stroma resulted in T cells containing the retroviral marker gene. These studies should facilitate both in vitro and in vivo studies of hematopoietic stem cell therapeutic strategies for AIDS.  相似文献   

13.
Background aimsUn-engineered human and rat umbilical cord matrix stem cells (UCMSCs) attenuate growth of several types of tumors in mice and rats. However, the mechanism by which UCMSCs attenuate tumor growth has not been studied rigorously.MethodsThe possible mechanisms of tumor growth attenuation by rat UCMSCs were studied using orthotopic Mat B III rat mammary tumor grafts in female F344 rats. Tumor-infiltrating leukocytes were identified and quantified by immunohistochemistry analysis. Potential cytokines involved in lymphocyte infiltration in the tumors were determined by microarray and Western blot analysis. The Boyden chamber migration assay was performed for the functional analysis of identified cytokines.ResultsRat UCMSCs markedly attenuated tumor growth; this attenuation was accompanied by considerable lymphocyte infiltration. Immunohistochemistry analysis revealed that most infiltrating lymphocytes in the rat UCMSC-treated tumors were CD3+ T cells. In addition, treatment with rat UCMSCs significantly increased infiltration of CD8+ and CD4+ T cells and natural killer (NK) cells throughout tumor tissue. CD68+ monocytes/macrophages and Foxp3+ regulatory T cells were scarcely observed, only in the tumors of the phosphate-buffered saline control group. Microarray analysis of rat UCMSCs demonstrated that monocyte chemotactic protein-1 is involved in rat UCMSC-induced lymphocyte infiltration in the tumor tissues.ConclusionsThese results suggest that naïve rat UCMSCs attenuated mammary tumor growth at least in part by enhancing host anti-tumor immune responses. Naïve UCMSCs can be used as powerful therapeutic cells for breast cancer treatment, and monocyte chemotactic protein-1 may be a key molecule to enhance the effect of UCMSCs at the tumor site.  相似文献   

14.
Mesenchymal stem cells (MSCs) are a population of pluripotent cells within the bone marrow microenvironment defined by their ability to differentiate into cells of the osteogenic, chondrogenic, tendonogenic, adipogenic, and myogenic lineages. We have developed methodologies to isolate and culture-expand MSCs from human bone marrow, and in this study, we examined the MSC's role as a stromal cell precursor capable of supporting hematopoietic differentiation in vitro. We examined the morphology, phenotype, and in vitro function of cultures of MSCs and traditional marrow-derived stromal cells (MDSCs) from the same marrow sample. MSCs are morphologically distinct from MDSC cultures, and flow cytometric analyses show that MSCs are a homogeneous cell population devoid of hematopoietic cells. RT-PCR analysis of cytokine and growth factor mRNA in MSCs and MDSCs revealed a very similar pattern of mRNAs including IL-6, -7, -8, -11, -12, -14, and -15, M-CSF, Flt-3 ligand, and SCF. Steady-state levels of IL-11 and IL-12 mRNA were found to be greater in MSCs. Addition of IL-1α induced steady-state levels of G-CSF and GM-CSF mRNA in both cell preparations. In contrast, IL-1α induced IL-1α and LIF mRNA levels only in MSCs, further emphasizing phenotypic differences between MSCs and MDSCs. In long-term bone marrow culture (LTBMC), MSCs maintained the hematopoietic differentiation of CD34+ hematopoietic progenitor cells. Together, these data suggest that MSCs represent an important cellular component of the bone marrow microenvironment. J. Cell. Physiol. 176:57–66, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Pancreatic cancer (PC) mobilizes myeloid cells from the bone marrow to the tumor where they promote tumor growth and proliferation. Cancer stem cells (CSCs) are a population of tumor cells that are responsible for tumor initiation. Aldehyde dehydrogenase-1 activity in PC identifies CSCs, and its activity has been correlated with poor overall prognosis in human PC. Myeloid cells have been shown to impact tumor stemness, but the impact of immunosuppressive tumor-infiltrating granulocytic and monocytic myeloid-derived suppressor cells (Mo-MDSC) on ALDH1Bright CSCs and epithelial to mesenchymal transition is not well understood. In this study, we demonstrate that Mo-MDSC (CD11b+/Gr1+/Ly6G?/Ly6Chi) significantly increase the frequency of ALDH1Bright CSCs in a mouse model of PC. Additionally, there was significant upregulation of genes associated with epithelial to mesenchymal transition. We also found that human PC converts CD14+ peripheral blood monocytes into Mo-MDSC (CD14+/HLA-DRlow/?) in vitro, and this transformation is dependent on the activation of the STAT3 pathway. In turn, these Mo-MDSC increase the frequency of ALDH1Bright CSCs and promote mesenchymal features of tumor cells. Finally, blockade of STAT3 activation reversed the increase in ALDH1Bright CSCs. These data suggest that the PC tumor microenvironment transforms monocytes to Mo-MDSC by STAT3 activation, and these cells increase the frequency of ALDH1Bright CSCs. Therefore, targeting STAT3 activation may be an effective therapeutic strategy in targeting CSCs in PC.  相似文献   

16.
CD8+ T cells play a central role in antitumour immunity, which often exhibit ‘exhaustion’ in the setting of malignancy and chronic viral infection due to T cell immunoglobulin and mucin domain 3 (TIM3) and myeloid‐derived suppressor cells (MDSCs). Our team previously found that overactive MDSCs and exhausted TIM3+CD8+ T cells were observed in myelodysplastic syndromes (MDS) patients. However, it is not obvious whether MDSCs suppress CD8+ T cells through TIM3/Gal‐9 pathway. Here, Gal‐9, as the ligand of TIM3, was overexpressed in MDSCs. The levels of Gal‐9 in bone marrow supernatants, serum and culture supernatants of MDSCs from MDS patients were elevated. CD8+ T cells from MDS or normal controls produced less perforin and granzyme B and exhibited increased early apoptosis after co‐culture with MDSCs from MDS. Meanwhile, the cytokines produced by CD8+ T cells could be partially restored by TIM3/Gal‐9 pathway inhibitors. Furthermore, CD8+ T cells produced less perforin and granzyme B after co‐culture with excess exogenous Gal‐9, and the function of CD8+ T cells was similarly restored by TIM3/Gal‐9 pathway inhibitors. Expression of Notch1, EOMES (associated with perforin and granzyme B secretion), p‐mTOR and p‐AKT (associated with cell proliferation) was decreased in CD8+ T cells from MDS after co‐culture with excess exogenous Gal‐9. These suggested that MDSCs might be the donor of Gal‐9, and TIM3/Gal‐9 pathway might be involved in CD8+ T cells exhaustion in MDS, and that TIM3/Gal‐9 pathway inhibitor might be the promising candidate for target therapy of MDS in the future.  相似文献   

17.
CD4+ Th17 cells induce antitumor immunity leading to the eradication of established tumors. However, the mechanism of antitumour immunity and CTL activation by Th17 cells and the distinct role of Th17 and Th17-activated CTLs in antitumor immunity are still elusive. In this study, we generated ovalbumin (OVA)-specific Th17 cells by cultivating OVA-pulsed dendritic cells with CD4+ T cells derived from transgenic OTII mice in the presence of IL-6, IL-23, TGF-β, and anti-IFN-γ antibody. We demonstrated that Th17 cells acquired major histocompatibility complex/peptide (pMHC)-I and expressed RORγt, IL-17, and IL-2. Th17 cells did not have any direct in vitro tumor cell–killing activity. However, Th17 cells were able to stimulate CD8+ CTL responses via IL-2 and pMHC I, but not IL-17 signaling, which play a major role in Th17-induced preventive immunity against OVA-expressing B16 melanoma. Th17 cells stimulated the expression of CCL2 and CCL20 in lung tumor microenvironments promoting the recruitment of various inflammatory leukocytes (DCs, CD4+, and CD8+ T cells) stimulating more pronounced therapeutic immunity for early-stage (5-day lung metastases or 3 mm, s.c.) tumor than for well-established (6 mm, s.c.) tumor. The therapeutic effect of Th17 cells is associated with IL-17 and is mediated by Th17-stimulated CD8+ CTLs and other inflammatory leukocytes recruited into B16 melanoma via Th17-stimulated CCL20 chemoattraction. Taken together, our data elucidate a distinct role of Th17 and Th17-stimulated CD8+ CTLs in the induction of preventive and therapeutic antitumor immunity, which may greatly impact the development of Th17-based cancer immunotherapy.  相似文献   

18.
Gr-1+CD11b+ cells can suppress innate and adaptive immunity, and the functional immunosuppressive characteristics of these cells can be modulated by the tumor microenvironment. Since Gr-1+CD11+ cells are also involved in tumor-associated angiogenesis, we hypothesized that the angiogenic nature of Gr-1+CD11b+ cells could be regulated by the tumor milieu. To address this hypothesis, we imitated a tumor microenvironment by exposing Gr-1+CD11b+ cells isolated from spleen of 4T1 mammary carcinoma-bearing mice to tumor-conditioned medium. Supernatants from tumor-conditioned Gr-1+CD11b+ cells significantly induced capillary-like tube formation and migration of human umbilical vein endothelial cells (HUVECs) compared to naive Gr-1+CD11b+ cells. Incubation of Gr-1+CD11b+ cells with tumor-conditioned medium induced production of pro-angiogenic chemokines CCL2 and CXCL16. Pretreatment with an anti-CCL2 antibody, but not an anti-CXCL16 antibody, suppressed the angiogenic effects of tumor-conditioned Gr-1+CD11b+ cells on HUVECs. Simultaneous neutralization of CCL2 and CXCL16 significantly inhibited tube formation and migration of HUVECs compared to the sole neutralization against CCL2. Supernatants from tumor-conditioned Gr-1+CD11b+ cells induced phosphorylation of ERK1/2 in HUVECs, and inhibition of the ERK pathway blocked angiogenic effects. ERK pathway activity was partially abrogated by neutralization of CCL2 and more suppressed by simultaneous neutralization of CCL2 and CXCL16. These results collectively indicate that CCL2 and CXCL16 chemokines produced by tumor-conditioned Gr-1+CD11b+ myeloid cells synergistically induce angiogenesis in vitro by stimulating the ERK1/2 signaling pathway. Thus, regulation of Gr-1+CD11b+ cells in the tumor microenvironment may contribute to angiogenesis through the secretion of pro-angiogenic chemokines.  相似文献   

19.
Although many breast cancers respond to chemotherapy or hormonal therapy, lack of tumor eradication is a central clinical problem preceding the development of drug resistant tumors. Using the K14cre;Brca1F5-13/F5-13;p53F2-10/F2-10mouse model for hereditary breast cancer, we have previously studied responses of mammary tumors generated in to clinically relevant anti-cancer drugs, including cisplatin. The BRCA1- and p53-deficient tumors generated in this model are hypersensitive to cisplatin and never become resistant to this agent due to the large, irreversible deletion in Brca1. We show here that even dose-dense treatment with a maximum tolerated dose of cisplatin does not result in complete tumor eradication. To explain this result we have addressed the hypothesis that the lack of eradication of drug-sensitive tumors is due to increased in vivo chemotherapy resistance of tumor-initiating cells (TICs). Using the CD24 and CD49f cell surface markers which detect normal mouse mammary stem cells, we have identified tumor-initiating cells in BRCA1- and p53-deficient tumors. In addition to the "OLE_LINK14">Lin-/CD24+/CD49f+ subpopulation, we show that a larger population of Lin-/CD24+/CD49f- cells also has tumor-initiating capability in at least two serial orthotopic transplantations, suggesting that these are not more differentiated transit-amplifying cells. However, we did not find an enrichment of TICs in cisplatin-treated tumor remnants. We conclude that in this model the tolerance of the cisplatin-surviving cells cannot be attributed to special biochemical defense mechanisms of TICs.

  相似文献   

20.

Background

Aldehyde dehydrogenase (ALDH) is a cytosolic enzyme highly expressed in hematopoietic precursors from cord blood and granulocyte-colony stimulating factor mobilized peripheral blood, as well as in bone marrow from patients with acute myeloblastic leukemia. As regards human normal bone marrow, detailed characterization of ALDH+ cells has been addressed by one single study (Gentry et al, 2007). The goal of our work was to provide new information about the dissection of normal bone marrow progenitor cells based upon the simultaneous detection by flow cytometry of ALDH and early hematopoietic antigens, with particular attention to the expression of ALDH on erythroid precursors. To this aim, we used three kinds of approach: i) multidimensional analytical flow cytometry, detecting ALDH and early hematopoietic antigens in normal bone marrow; ii) fluorescence activated cell sorting of distinct subpopulations of progenitor cells, followed by in vitro induction of erythroid differentiation; iii) detection of ALDH+ cellular subsets in bone marrow from pure red cell aplasia patients.

Results

In normal bone marrow, we identified three populations of cells, namely ALDH+CD34+, ALDH-CD34+ and ALDH+CD34- (median percentages were 0.52, 0.53 and 0.57, respectively). As compared to ALDH-CD34+ cells, ALDH+CD34+ cells expressed the phenotypic profile of primitive hematopoietic progenitor cells, with brighter expression of CD117 and CD133, accompanied by lower display of CD38 and CD45RA. Of interest, ALDH+CD34- population disclosed a straightforward erythroid commitment, on the basis of three orders of evidences. First of all, ALDH+CD34- cells showed a CD71bright, CD105+, CD45- phenotype. Secondly, induction of differentiation experiments evidenced a clear-cut expression of glycophorin A (CD235a). Finally, ALDH+CD34- precursors were not detectable in patients with pure red cell aplasia (PRCA).

Conclusion

Our study, comparing surface antigen expression of ALDH+/CD34+, ALDH-/CD34+ and ALDH+/CD34- progenitor cell subsets in human bone marrow, clearly indicated that ALDH+CD34- cells are mainly committed towards erythropoiesis. To the best of our knowledge this finding is new and could be useful for basic studies about normal erythropoietic differentiation as well as for enabling the employment of ALDH as a red cell marker in polychromatic flow cytometry characterization of bone marrow from patients with aplastic anemia and myelodysplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号