首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leukocyte recruitment to the airway lumen is a central feature of inflammatory conditions such as asthma and respiratory viral infection. Characterization of mediators that regulate leukocyte recruitment in these conditions revealed increased IL-12 p40 homodimer (p80) levels were associated with enhanced airway macrophage accumulation. To examine this association, we used in vivo and in vitro assays to demonstrate p80, but not IL-12 or p40, provided a macrophage chemoattractant signal. Macrophages from genetically deficient mice indicated p80-dependent chemotaxis was independent of IL-12 and required IL-12Rbeta1 (Rbeta1) expression. Furthermore, analysis of murine cell lines and primary culture macrophages revealed Rbeta1 expression, with an intact cytoplasmic tail, was necessary and sufficient to mediate p80-dependent chemotaxis. To examine the role for Rbeta1 in mediating macrophage accumulation in vivo, we contrasted Sendai virus-driven airway inflammation in wild-type and Rbeta1-deficient mice. Despite similar viral burden and production of the macrophage chemoattractant p80, the Rbeta1-deficient mice displayed a selective decrease in airway macrophage accumulation and resistance to viral-dependent mortality. Thus, Rbeta1 mediates p80-dependent macrophage chemotaxis and inhibition of the p80-Rbeta1 interaction may provide a novel anti-inflammatory strategy to manipulate the inflammation associated with asthma and respiratory viral infection.  相似文献   

2.
 Bronchogenic carcinoma is the leading cause of malignancy-related mortality in the United States, with an overall 5-year survival rate of less than 15%. This aggressive behavior reflects, among other traits, the capacity of the tumor to evade normal host immune defenses, and to induce a pro-angiogenic environment. A central feature of any immune response toward tumors is the recruitment of specific immune cell populations. In the present study we investigated the infiltration of monocytes in human specimens of non-small-cell lung cancer (NSCLC). The presence of macrophages in NSCLC tumors was documented by immunohistochemistry. In vitro chemotaxis assays demonstrated higher monocyte chemotactic activity in NSCLC tumor homogenates than in normal lung tissue. We next investigated the expression of CC chemokines within specimens of NSCLC tumors. Levels of the CC chemokines were higher in NSCLC tumor tissue than in normal lung tissue. Immunolocalization showed that the cells associated with antigenic CC chemokines were the malignant tumor cells, as well as occasional stromal cells. Maximal inhibition of monocyte chemotaxis induced by NSCLC in vitro occurred in the presence of neutralizing antibodies to MCP-1 and MIP-1β. On follow-up of 15 patients in whom we quantified macrophage infiltration, we found that those with recurrence of disease had higher levels of macrophage infiltration in their initial tumors. However, the functional significance of CC-chemokine-mediated macrophage infiltration into NSCLC remains to be determined. Received: 12 November 1999 / Accepted: 10 December 1999  相似文献   

3.
Dendritic cell migration to secondary lymphoid tissues is critical for Ag presentation to T cells necessary to elicit an immune response. Despite the importance of dendritic cell trafficking in immunity, at present little is understood about the mechanisms that underlie this phenomenon. Using a novel transwell chemotaxis assay system, we demonstrate that the CC chemokine receptor-7 (CCR7) ligands 6Ckine and macrophage inflammatory protein (MIP)-3 beta are selective chemoattractants for MHC class IIhigh B7-2high bone marrow-derived dendritic cells at a potency 1000-fold higher than their known activity on naive T cells. Furthermore, these chemokines stimulate the chemotaxis of freshly isolated lymph node dendritic cells, as well as the egress of skin dendritic cells ex vivo. Because these chemokines are expressed in lymphoid organs and 6Ckine has been localized to high endothelial venules and lymphatic endothelium, we propose that they may play an important role in the homing of dendritic cells to lymphoid tissues.  相似文献   

4.
It is widely believed that the cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1, and IL-6 are the main proinflammatory mediators induced in the host by bacteria and their cell wall components. To test this hypothesis, we compared the level of expression of 600 genes activated in human monocytes by Staphylococcus aureus, peptidoglycan, endotoxin, and interferon-gamma. These stimulants induced expression of over 120 genes, as identified by cDNA arrays. The highest activated genes for proinflammatory mediators induced by all three bacterial stimulants were chemokine genes (IL-8 and macrophage inflammatory protein (MIP)-1alpha), whereas cytokine genes (TNF-alpha, IL-1, and IL-6) were induced to a lower extent. Genes for other chemokines (MIP-2alpha, MIP-1beta, and monocyte chemoattractant protein-1) were also induced higher than the cytokine genes by peptidoglycan, and as high or higher than the cytokine genes by S. aureus and endotoxin. This high induction of chemokine genes was confirmed by quantitative RNase protection assay, and high secretion of chemokines was confirmed by enzyme-linked immunosorbent assays. Although genes for chemokines were the highest and genes for cytokines were the second highest induced genes by all three bacterial stimulants, each stimulus induced a unique pattern of gene expression. By contrast, expression of a completely different gene pattern was induced by a nonbacterial stimulus, interferon-gamma. These results establish chemokines as the main mediators induced by both Gram-positive and Gram-negative bacteria and are consistent with the highly inflammatory nature of bacterial infections.  相似文献   

5.
Chemokines are a class of inflammatory mediators which main function is to direct leukocyte migration through the binding to G protein-coupled receptors (GPCRs). In addition to these functional, signal-transducing chemokine receptors other types of receptors belonging to the chemokine GPCR family were identified. They are called atypical or decoy chemokine receptors because they bind and degrade chemokines but do not transduce signals or activate cell migration. Here there is the summary of two recent papers that identified other nonchemotactic chemokine receptors: the Duffy antigen receptor for chemokines (DARC) that mediates trancytosis of chemokines from tissue to vascular lumen promoting chemokine-mediated leukocyte transmigration and chemokine (CC motif) receptor-like 2 (CCRL2) that neither internalizes its ligands nor transduces signals but presents bound ligands to functional signaling receptors improving their activity. Collectively these nonchemotactic chemokine receptors do not directly induce cell migration, but appear nonetheless to play a nonredundant role in leukocyte recruitment by shaping the chemoattractant gradient, either by removing, transporting or concentrating their cognate ligands.Key words: Chemokine, chemokine receptor, leukocyte recruitment, chemotaxis, transcytosis  相似文献   

6.
Neutrophils (polymorphonuclear leukocytes; PMN) are phagocytic cells instrumental in the clearance of infectious pathogens. Human PMN are commonly thought to respond primarily to chemokines from the CXC family. However, recent findings suggest that under specific cytokine activation conditions, PMN can also respond to some CC chemokines. In this study, the effect of GM-CSF, a well-characterized PMN priming and maturation factor, on CC-chemokine receptor (CCR) expression in PMN was investigated. Constitutive expression of CCR1 and CCR3 mRNA in PMN was detected by ribonuclease protection assay. Following incubation of PMN with GM-CSF (0.01-10 ng/ml; 6 h) CCR1 mRNA expression was rapidly (approximately 1 h) up-regulated. In contrast, no significant induction of CCR2, CCR3, CCR4, or CCR5 mRNA was observed. CCR1 protein was also up-regulated by GM-CSF stimulation. GM-CSF-induced up-regulation of CCR1 showed functional consequences because GM-CSF-treated PMN, but not control cells, responded to the CC chemokines macrophage inflammatory protein-1alpha, monocyte chemoattractant protein-3, and RANTES in assays of chemotactic migration and intracellular calcium mobilization. These results suggest that PMN activated by the proinflammatory cytokine GM-CSF can change their receptor expression pattern and become responsive to CC chemokines.  相似文献   

7.
8.
Chemokines are involved in recruitment and activation of hematopoietic cells at sites of infection and inflammation. The M3 gene of gammaHV68, a gamma-2 herpesvirus that infects and establishes a lifelong latent infection and chronic vasculitis in mice, encodes an abundant secreted protein during productive infection. The M3 gene is located in a region of the genome that is transcribed during latency. We report here that the M3 protein is a high-affinity broad-spectrum chemokine scavenger. The M3 protein bound the CC chemokines human regulated upon activation of normal T-cell expressed and secreted (RANTES), murine macrophage inflammatory protein 1alpha (MIP-1alpha), and murine monocyte chemoattractant protein 1 (MCP-1), as well as the human CXC chemokine interleukin-8, the murine C chemokine lymphotactin, and the murine CX(3)C chemokine fractalkine with high affinity (K(d) = 1. 6 to 18.7 nM). M3 protein chemokine binding was selective, since the protein did not bind seven other CXC chemokines (K(d) > 1 microM). Furthermore, the M3 protein abolished calcium signaling in response to murine MIP-1alpha and murine MCP-1 and not to murine KC or human stromal cell-derived factor 1 (SDF-1), consistent with the binding data. The M3 protein was also capable of blocking the function of human CC and CXC chemokines, indicating the potential for therapeutic applications. Since the M3 protein lacks homology to known chemokines, chemokine receptors, or chemokine binding proteins, these studies suggest a novel herpesvirus mechanism of immune evasion.  相似文献   

9.
We hypothesized that US28, a cytomegalovirus (CMV) CC chemokine receptor homolog, plays a role in modulating the host antiviral defense. Monocyte chemotaxis was induced by supernatants from fibroblasts infected with a US28 deletion mutant of CMV (CMV Delta US28) due to endogenously produced CC chemokines MCP-1 and RANTES. However, these chemokines were sequestered from the supernatants of CMV-infected cells that did express US28. US28 was also capable of sequestering exogenously added RANTES. Surprisingly, cells infected with CMV Delta US28 transcribed and secreted increased levels IL-8, a CXC chemokine, when compared to CMV-infected cells. Finally, because chemokines are potent mediators of immune cell migration through the endothelium, we characterized the CC chemokine binding potential of CMV-infected endothelial cells. We propose that US28 functions as a 'chemokine sink' by sequestering endogenously and exogenously produced chemokines and alters the production of the CXC chemokine IL-8, suggesting that CMV could significantly alter the inflammatory milieu surrounding infected cells.  相似文献   

10.
The human CC chemokine leukotactin-1 (Lkn-1) is both a strong chemoattractant for neutrophils, monocytes, and lymphocytes and a potent agonist for CCR1 and CCR3. However, human neutrophils do not migrate when the cells are stimulated with other human CC chemokines, such as human macrophage inflammatory protein-1 alpha (hMIP-1 alpha) and eotaxin, which also use the CCR1 and CCR3 as their receptors. In this report, we demonstrate that while hMIP-1 alpha induced a negligible level of calcium flux and chemotaxis, Lkn-1 produced a high level of calcium flux and chemotaxis in human neutrophils. Lkn-1 cross-desensitized hMIP-1 alpha-induced calcium flux, but hMIP-1 alpha had little effect on the Lkn-1-induced response in human neutrophils. The same pattern was observed in peritoneal neutrophils from wild-type mice, whereas neutrophils from CCR1-/- mice failed to respond to either MIP-1 alpha or Lkn-1. Scatchard analysis revealed a single class of receptor for both hMIP-1 alpha and Lkn-1 on human neutrophils with dissociation constants (Kd) of 3.2 nM and 1.1 nM, respectively. We conclude that CCR1 is a receptor mediating responses to both MIP-1 alpha and Lkn-1 on neutrophils and produces different biological responses depending on the ligand bound.  相似文献   

11.
12.
Pulmonary thromboembolism (PEm) is a serious and life threatening disease and the most common cause of acute pulmonary vascular occlusion. Even following successful treatment of PEm, many patients experience long-term disability due to diminished heart and lung function. Considerable damage to the lungs presumably occurs due to reperfusion injury following anti-occlusive treatments for PEm and the resulting chronic inflammatory state in the lung vasculature. We have used a rat model of irreversible PEm to ask whether pulmonary vascular occlusion in the absence of reperfusion is itself sufficient to induce an inflammatory response in lungs. By adjusting the severity of the vascular occlusion, we were able to generate hypertensive and nonhypertensive PEm, and then examine lung tissue for expression of CXC and C-C chemokine genes and bronchoalveolar lavage (BAL) fluid for the presence of chemokine proteins. Hypertensive and nonhypertensive PEm resulted in increased expression of both CXC and C-C chemokines genes in lung tissues. Hypertensive PEm was also associated with a 50-100-fold increase in protein content in lung BAL fluid, which included the CXC chemokines cytokine-induced neutrophil chemoattractant and macrophage-inflammatory protein 2. The presence of chemokines in BALs was reflected by a potent neutrophil chemotactic activity in in vitro chemotaxis assays. Abs to cytokine-induced neutrophil chemoattractant blocked the in vitro neutrophil chemotactic activity of BAL by 44%. Our results indicate that the ischemia and hypertension associated with PEm are sufficient to induce expression of proinflammatory mediators such as chemokines, and establish a proinflammatory environment in the ischemic lung even before reperfusion.  相似文献   

13.
《The Journal of cell biology》1996,134(4):1063-1073
Leukocyte emigration possibly requires dynamic regulation of integrin adhesiveness for endothelial and extracellular matrix ligands. Adhesion assays on purified vascular cell adhension molecule (VCAM)-1, fibronectin, and fibronectin fragments revealed distinct kinetic patterns for the regulation of very late antigen (VLA)-4 (alpha 4 beta 1) and VLA-5 (alpha 5 beta 1) avidity by the CC chemokines monocyte inflammatory protein (MIP)-1 alpha, RANTES (regulated on activation, normal T expressed and secreted), or monocyte chemoattractant protein (MCP)-1 in monocytes. CC chemokines induced early activation and subsequent deactivation of VLA-4, whereas upregulation of VLA-5 avidity occurred later and persisted. Controlled detachment assays in shear flow suggested that adhesive strength of VLA-4 for VCAM-1 or the 40-kD fragment of fibronectin (FN40) is more rapidly increased and subsequently reduced by MCP-1 than by MIP-1 alpha, and confirmed late and sustained activation of the adhesive strength of VLA-5 for the 120- kD fragment of fibronectin (FN120). Mn2+ or the stimulating beta 1 mAb TS2/16 strongly and stably enhanced monocyte binding to VCAM-1 or fibronectin, and locked beta 1 integrins in a high avidity state, which was not further modulated by CC chemokines. Mn2+ and mAb TS2/16 inhibited CC chemokine-induced transendothelial migration, particularly chemotaxis across stimulated endothelium that involved VLA-4 and VCAM- 1. VLA-4 on Jurkat cells is of constitutively high avidity and interfered with migration across barriers expressing VCAM-1. Low but not high site densities of VCAM-1 or FN40 promoted, while FN120 impaired, beta 1 integrin-dependent monocyte chemotaxis to MCP-1 across filters coated with these substrates. Thus, we show that CC chemokines can differentially and selectively regulate avidity of integrins sharing common beta subunits. Transient activation and deactivation of VLA-4 may serve to facilitate transendothelial diapedesis, whereas late and prolonged activation of VLA-5 may mediate subsequent interactions with the basement membrane and extracellular matrix.  相似文献   

14.
Summary A colony stimulating factor-1-dependent macrophage cell line, I-9.5, originally derived from a BALB/c splenic macrophage colony, was maintained in culture and examined for the expression of certain properties key to its innate immune function. Chemotaxis, phagocytosis, and superoxide release were assessed in this cell line and compared to either freshly isolated elicited murine peritoneal or splenic macrophages from BALB/c mice. Three separate experiments indicated that I-9.5 displayed comparable phagocytosis of14C-radio-labeledStaphylococus aureus and similar levels of superoxide release in response to opsonized zymosan. I-9.5, however, demonstrated impaired chemotaxis toward the chemoattractant, N-formyl-methionyl-leucyl-phenylalanine, and displayed impaired random migration in response to a balanced salt solution. This observation suggests that I-9.5 may serve as an important model for elucidating the structural and molecular correlates of chemotaxis.  相似文献   

15.
16.
Injection of nephrotoxic serum into rats results in glomerular inflammation and proteinuria. Rats placed on an essential fatty acid (EFA)-deficient diet are protected from the glomerular macrophage infiltration and the ensuing proteinuria. To account for this protection, we studied EFA-deficient rats to determine if there were defects in macrophage chemotaxis. We also investigated the possibility that EFA deficiency diminishes the production of a glomerular chemoattractant for monocytes. In microchemotaxis assays EFA-deficient macrophages migrated normally. EFA-deficient serum did not appear to contain a chemotactic inhibitor. Cultured glomeruli from control and control nephritic rats were found to elaborate a chemoattractant for monocytes. This chemoattractant activity was markedly enhanced after induction of nephritis, was heat stable, was not altered by inhibition of cyclooxygenase, lipoxygenase, or platelet-activating factor, and did not depend on C or the glomerular inflammatory cell infiltrate. EFA-deficient glomeruli harvested from animals receiving injections with nephrotoxic serum produced markedly less chemoattractant activity than glomeruli from control nephritic animals. Lipid extraction of nephritic glomeruli from control animals yielded chemoattractant activity in the organic phase. Extracts of EFA-deficient nephritic glomeruli had considerably less activity. We propose that EFA deficiency attenuates glomerular inflammation by inhibiting the ability of glomeruli to produce a specific lipid monocyte chemoattractant after exposure to a nephritic stimulus.  相似文献   

17.
Toll-like receptors (TLRs) are pattern recognition receptors that serve an important function in detecting pathogens and initiating inflammatory responses. Upon encounter with foreign Ag, dendritic cells (DCs) go through a maturation process characterized by an increase in surface expression of MHC class II and costimulatory molecules, which leads to initiation of an effective immune response in naive T cells. The innate immune response to bacterial flagellin is mediated by TLR5, which is expressed on human DCs. Therefore, we sought to investigate whether flagellin could induce DC maturation. Immature DCs were cultured in the absence or presence of flagellin and monitored for expression of cell surface maturation markers. Stimulation with flagellin induced increased surface expression of CD83, CD80, CD86, MHC class II, and the lymph node-homing chemokine receptor CCR7. Flagellin stimulated the expression of chemokines active on neutrophils (IL-8/CXC chemokine ligand (CXCL)8, GRO-alpha/CXCL1, GRO-beta/CXCL2, GRO-gamma/CXCL3), monocytes (monocyte chemoattractant protein-1/CC chemokine ligand (CCL)2), and immature DCs (macrophage-inflammatory protein-1 alpha/CCL3, macrophage-inflammatory protein-1 beta/CCL4), but not chemokines active on effector T cells (IFN-inducible protein-10 kDa/CXCL10, monokine induced by IFN-gamma/CXCL9, IFN-inducible T cell alpha chemoattractant/CXCL11). However, stimulating DCs with both flagellin and IFN-inducible protein-10 kDa, monokine induced by IFN-gamma, and IFN-inducible T cell alpha chemoattractant expression, whereas stimulation with IFN-beta or flagellin alone failed to induce these chemokines. In functional assays, flagellin-matured DCs displayed enhanced T cell stimulatory activity with a concomitant decrease in endocytic activity. Finally, DCs isolated from mouse spleens or bone marrows were shown to not express TLR5 and were not responsive to flagellin stimulation. These results demonstrate that flagellin can directly stimulate human but not murine DC maturation, providing an additional mechanism by which motile bacteria can initiate an acquired immune response.  相似文献   

18.
Apoptotic cell removal (efferocytosis) is an essential process in the regulation of inflammation and tissue repair. We have shown that monocyte chemoattractant protein-1/CC chemokine ligand 2 (MCP-1/CCL2) enhances efferocytosis by alveolar macrophages in murine bacterial pneumonia. However, the mechanism by which MCP-1 exerts this effect remains to be determined. Here we explored that hypothesis that MCP-1 enhances efferocytosis through a Rac1/phosphatidylinositol 3-kinase (PI3-kinase)-dependent mechanism.We assessed phagocytosis of apoptotic cells by MCP-1 treated murine macrophages in vitro and in vivo. Rac activity in macrophages was measured using a Rac pull down assay and an ELISA based assay (GLISA). The downstream Rac1 activation pathway was studied using a specific Rac1 inhibitor and PI3-kinase inhibitor in in vitro assays.MCP-1 enhanced efferocytosis of apoptotic cells by murine alveolar macrophages (AMs), peritoneal macrophages (PMs), the J774 macrophage cell line (J774s) in vitro, and murine AMs in vivo. Rac1 activation was demonstrated in these cell lines. The effect of MCP-1 on efferocytosis was completely negated by the Rac1 inhibitor and PI3-kinase inhibitor.We demonstrated that MCP-1 enhances efferocytosis in a Rac1-PI3 kinase-dependent manner. Therefore, MCP-1-Rac1-PI3K interaction plays a critical role in resolution of acute lung inflammation.  相似文献   

19.
Extravascular fibrin deposition is an early and persistent hallmark of inflammatory responses. Fibrin is generated from plasma-derived fibrinogen, which escapes the vasculature in response to endothelial cell retraction at sites of inflammation. Our ongoing efforts to define the physiologic functions of extravasated fibrin(ogen) have led to the discovery, reported here, that fibrinogen stimulates macrophage chemokine secretion. Differential mRNA expression analysis and RNase protection assays revealed that macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, MIP-2, and monocyte chemoattractant protein-1 are fibrinogen inducible in the RAW264.7 mouse macrophage-like cell line, and ELISA confirmed that both RAW264.7 cells and primary murine thioglycolate-elicited peritoneal macrophages up-regulate the secretion of monocyte chemoattractant protein-1 >100-fold upon exposure to fibrinogen. Human U937 and THP-1 precursor-1 (THP-1) monocytic cell lines also secreted chemokines in response to fibrinogen, upon activation with IFN-gamma and differentiation with vitamin D(3), respectively. LPS contamination could not account for our observations, as fibrinogen-induced chemokine secretion was sensitive to heat denaturation and was unaffected by the pharmacologic LPS antagonist polymyxin B. Nevertheless, fibrinogen- and LPS-induced chemokine secretion both apparently required expression of functional Toll-like receptor 4, as each was diminished in macrophages derived from C3H/HeJ mice. Thus, innate responses to fibrinogen and bacterial endotoxin may converge at the evolutionarily conserved Toll-like recognition molecules. Our data suggest that extravascular fibrin(ogen) induces macrophage chemokine expression, thereby promoting immune surveillance at sites of inflammation.  相似文献   

20.
We have previously shown that 17beta-estradiol (E2) attenuates responses to endoluminal injury of the rat carotid artery, at least in part, by decreasing inflammatory mediator expression and neutrophil infiltration into the injured vessel, with a major effect on the neutrophil-specific chemokine cytokine-induced neutrophil chemoattractant (CINC)-2 beta. Current studies tested the hypothesis that activated rat aortic smooth muscle cells (RASMCs) express these same inflammatory mediators and induce neutrophil migration in vitro and that E2 inhibits these processes by an estrogen receptor (ER)-dependent mechanism. Quiescent RASMCs treated with E2, the ER alpha-selective agonist propyl pyrazole triol (PPT), the ER beta-selective agonist diarylpropiolnitrile (DPN), or vehicle for 24 h were stimulated with tumor necrosis factor (TNF)-alpha and processed for real-time RT-PCR, ELISA, or chemotaxis assays 6 h later. TNF-alpha stimulated and E2 attenuated mRNA expression of inflammatory mediators, including P-selectin, intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, monocyte chemoattractant protein (MCP)-1, and CINC-2 beta. DPN dose dependently attenuated TNF-alpha-induced mRNA expression of CINC-2 beta, whereas PPT had no effect. The anti-inflammatory effects of DPN and E2 were blocked by the nonselective ER-inhibitor ICI-182,780. ELISA confirmed the TNF-alpha-induced increase and E2-induced inhibition of CINC-2 beta protein secretion. TNF-alpha treatment of RASMCs produced a twofold increase in neutrophil chemotactic activity of conditioned media; E2 and DPN treatment markedly inhibited this effect. E2 inhibits activated RASMC proinflammatory mediator expression and neutrophil chemotactic activity through an ER beta-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号