首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Berry fruit is known for its high contents of various bioactive compounds. The latter constitute of anthocyanins, flavonols and flavanols and posses high antioxidative activity. The highly dynamic antioxidant system can be evaluated in vitro and in vivo in several model organisms. These measurements represent a good approximation of the real potential of bioactive compounds in the cells of higher eucarions. The aim of the study was thus to determine in vitro and in vivo antioxidant activity of different berry juices, which reportedly contain high amounts of phenolics.

Methodology/Principal Findings

Five different berry species were collected from several locations in central Slovenia and juice was extracted from each species separately. Juice was assessed for their in vitro and in vivo antioxidant activity. Phenolic profiles of berries were determined with the use of a HPLC/MS system, in vitro antioxidant activity with the DPPH radical scavenging method and in vivo antioxidative activity using Saccharomyces cerevisiae. The highest diversity of individual phenols was detected for bilberry juice. The highest in vitro antioxidant capacity was determined for blackcurrant juice. A decrease in intracellular oxidation compared to control was observed in the following order: blackcurrant < chokeberry = blueberry < bilberry. The results indicate important differences in antioxidant activity of berry juices between in vitro and in vivo studies.

Conclusion/Significance

In addition to the total content of phenolic compounds entering the cells, a key factor determining antioxidative activity of berry juices is also the ratio between the compounds. Where high content levels of anthocyanins and very low content levels of flavonols and hydroxycinnamic acids were measured a lower intracellular oxidation has been detected. Specifically, intracellular oxidation increased with higher consumption of hydroxycinnamic acids and lower consumption of anthocyanins in the cells. Antioxidative activity also increased when the consumption of analyzed phenols was rather low.  相似文献   

2.
Tellurium compounds have shown several biological properties and recently the leishmanicidal effect of one organotellurane was demonstrated. These findings led us to test the effect of the organotellurium compound RF07 on Leishmania (Leishmania) chagasi, the agent of visceral leishmaniasis in Latin America. In vitro assays were performed in L. (L.) chagasi-infected bone marrow derived macrophages treated with different concentrations of RF07. In in vivo experiments Golden hamsters were infected with L. (L.) chagasi and injected intraperitoneally with RF07 whereas control animals received either Glucantime or PBS. The effect of RF07 on cathepsin B activity of L. (L.) chagasi amastigotes was assayed spectrofluorometrically using fluorogenic substrates. The main findings were: 1) RF07 showed significant leishmanicidal activity against intracellular parasites at submicromolar concentrations (IC50 of 529.7±26.5 nM), and the drug displayed 10-fold less toxicity to macrophages (CC50 of 5,426±272.8 nM); 2) kinetics assays showed an increasing leishmanicidal action of RF07 at longer periods of treatment; 3) one month after intraperitoneal injection of RF07 L. (L.) chagasi-infected hamsters showed a reduction of 99.6% of parasite burden when compared to controls that received PBS; 4) RF07 inhibited the cathepsin B activity of L. (L.) chagasi amastigotes. The present results demonstrated that the tellurium compound RF07 is able to destroy L. (L.) chagasi in vitro and in vivo at concentrations that are non toxic to the host. We believe these findings support further study of the potential of RF07 as a possible alternative for the chemotherapy of visceral leishmaniasis.  相似文献   

3.

Background

Histone demethylases (HDMs) have a prominent role in epigenetic regulation and are emerging as potential therapeutic cancer targets. The search for small molecules able to inhibit HDMs in vivo is very active but at the present few compounds were found to be specific for defined classes of these enzymes.

Methodology/Principal Findings

In order to discover inhibitors specific for H3K4 histone demethylation we set up a screening system which tests the effects of candidate small molecule inhibitors on a S.cerevisiae strain which requires Jhd2 demethylase activity to efficiently grow in the presence of rapamycin. In order to validate the system we screened a library of 45 structurally different compounds designed as competitive inhibitors of α -ketoglutarate (α-KG) cofactor of the enzyme, and found that one of them inhibited Jhd2 activity in vitro and in vivo. The same compound effectively inhibits human Jumonji AT-Rich Interactive Domain (JARID) 1B and 1D in vitro and increases H3K4 tri-methylation in HeLa cell nuclear extracts (NEs). When added in vivo to HeLa cells, the compound leads to an increase of tri-methyl-H3K4 (H3K4me3) but does not affect H3K9 tri-methylation. We describe the cytostatic and toxic effects of the compound on HeLa cells at concentrations compatible with its inhibitory activity.

Conclusions/Significance

Our screening system is proved to be very useful in testing putative H3K4-specific HDM inhibitors for the capacity of acting in vivo without significantly altering the activity of other important 2-oxoglutarate oxygenases.  相似文献   

4.
KCNQ (Kv7) has emerged as a validated target for the development of novel anti-epileptic drugs. In this paper, a series of novel N-phenylbutanamide derivatives were designed, synthesized and evaluated as KCNQ openers for the treatment of epilepsy. These compounds were evaluated for their KCNQ opening activity in vitro and in vivo. Several compounds were found to be potent KCNQ openers. Compound 1 with favorable in vitro activity was submitted to evaluation in vivo. Results showed that compound 1 owned significant anti-convulsant activity with no adverse effects. It was also found to posses favorable pharmacokinetic profiles in rat. This research may provide novel potent compounds for the discovery of KCNQ openers in treating epilepsy.  相似文献   

5.
Worldwide, Hepatocellular Carcinoma (HCC) endures to be a prominent cause of cancer death. Treatment of HCC follows multiple therapies which are not entirely applicable for treatment of all patients. HCC usually arises contextual to chronic liver diseases and is often discovered at later stages which makes treatment options more complex. The present study aimed at design, synthesis & evaluation of new pyridazinoquinazoline derivatives as potential nontoxic anti-hepatocellular carcinoma (HCC) agents, through inhibition of Vascular endothelial growth factor -2 (VEGFR-2). Novel Pyridazino[3, 4, 5-de]quinazoline derivatives (2-6) were designed & synthesized. Their structures were confirmed via spectral and microanalytical data. They were tested for their in vitro VEGFR-2 inhibition & anticancer activity against human liver cancer cell line (HEPG-2). Molecular docking was investigated into VEGFR-2 site. In vivo studies of VEGRF-2 inhibition and the anti-apoptotic effect of the new compounds were determined in liver of irradiated rats. Toxicity of synthesized compounds was also assessed. The results showed that compounds 3-6 have significant antitumor activity and proved to be non-toxic. The ethoxy aniline derivative 6, exhibited the highest activity both in vitro and in vivo compared to the reference drug used, sorafenib. Compound 6 could be considered a promising nontoxic anti HCC agent and this could be partially attributed to its VEGFR-2 inhibition. Future preclinical investigation would be carried out to confirm the specific and exact mechanism of action of these derivatives especially compound 6 as an effective pharmaceutical agent after full toxicological and pharmacological assessment.  相似文献   

6.
In this study, two series of 35 new chalcone derivatives containing aryl-piperazine or aryl-sulfonyl-piperazine fragment were synthesized and their structures were characterized by 1H, 13C and ESI-MS. The in vivo and in vitro anti-inflammatory activities of target compounds were evaluated by using classical para-xylene-induced mice ear-swelling model and ELISA assays. Furthermore, docking studies were performed in COX-2 (4PH9). The in vivo anti-inflammatory assays indicated that most of the target compounds showed significant anti-inflammatory activities. Docking results revealed that the anti-inflammatory activities of compounds correlated with their docking results. Especially, compound 6o exhibited the most potent anti-inflammatory activity in vivo with the lowest docking score of ?17.4 kcal/mol and could significantly inhibit the release of LPS-induced IL-6 and TNF-α in a dose-dependent manner in vitro.  相似文献   

7.
Zebrafish-based chemical screening has recently emerged as a rapid and efficient method to identify important compounds that modulate specific biological processes and to test the therapeutic efficacy in disease models, including cancer. In leukemia, the ablation of leukemia stem cells (LSCs) is necessary to permanently eradicate the leukemia cell population. However, because of the very small number of LSCs in leukemia cell populations, their use in xenotransplantation studies (in vivo) and the difficulties in functionally and pathophysiologically replicating clinical conditions in cell culture experiments (in vitro), the progress of drug discovery for LSC inhibitors has been painfully slow. In this study, we developed a novel phenotype-based in vivo screening method using LSCs xenotransplanted into zebrafish. Aldehyde dehydrogenase-positive (ALDH+) cells were purified from chronic myelogenous leukemia K562 cells tagged with a fluorescent protein (Kusabira-orange) and then implanted in young zebrafish at 48 hours post-fertilization. Twenty-four hours after transplantation, the animals were treated with one of eight different therapeutic agents (imatinib, dasatinib, parthenolide, TDZD-8, arsenic trioxide, niclosamide, salinomycin, and thioridazine). Cancer cell proliferation, and cell migration were determined by high-content imaging. Of the eight compounds that were tested, all except imatinib and dasatinib selectively inhibited ALDH+ cell proliferation in zebrafish. In addition, these anti-LSC agents suppressed tumor cell migration in LSC-xenotransplants. Our approach offers a simple, rapid, and reliable in vivo screening system that facilitates the phenotype-driven discovery of drugs effective in suppressing LSCs.  相似文献   

8.
The combination of a high-affinity antibody to a hapten, and hapten-conjugated compounds, can provide an alternative to the direct chemical cross-linking of the antibody and compounds. An optimal hapten for in vitro use is one that is absent in biological systems. For in vivo applications, additional characteristics such as pharmacological safety and physiological inertness would be beneficial. Additionally, methods for cross-linking the hapten to various chemical compounds should be available. Cotinine, a major metabolite of nicotine, is considered advantageous in these aspects. A high-affinity anti-cotinine recombinant antibody has recently become available, and can be converted into various formats, including a bispecific antibody. The bispecific anti-cotinine antibody was successfully applied to immunoblot, enzyme immunoassay, immunoaffinity purification, and pre-targeted in vivo radioimmunoimaging. The anti-cotinine IgG molecule could be complexed with aptamers to form a novel affinity unit, and extended the in vivo half-life of aptamers, opening up the possibility of applying the same strategy to therapeutic peptides and chemical compounds. [BMB Reports 2014; 47(3): 130-134]  相似文献   

9.
A novel group of aryl methyl sulfones based on nonsteroidal anti-inflammatory compounds exhibiting a methyl sulfone instead of the acetic or propionic acid group was designed, synthesized and evaluated in vitro for inhibition against the human cyclooxygenase of COX-1 and COX-2 isoenzymes and in vivo for anti-inflammatory activity using the carrageenan induced rat paw edema model in rats. Also, in vitro chemosensitivity and in vivo analgesic and intestinal side effects were determined for defining the therapeutic and safety profile. Molecular modeling assisted the design of compounds and the interpretation of the experimental results. Biological assay results showed that methyl sulfone compounds 2 and 7 were the most potent COX inhibitors of this series and best than the corresponding carboxylic acids (methyl sulfone 2: IC50 COX-1?=?0.04 and COX-2?=?0.10?μM, and naproxen: IC50 COX-1?=?11.3 and COX-2?=?3.36?μM). Interestingly, the inhibitory activity of compound 2 represents a significant improvement compared to that of the parent carboxylic compound, naproxen. Further support to the results were gained by the docking studies which suggested the ability of compound 2 and 7 to bind into COX enzyme with low binding free energies.The improvement of the activity of some sulfones compared to the carboxylic analogues would be performed through a change of the binding mode or mechanism compared to the standard binding mode displayed by ibuprofen, as disclosed by molecular modeling studies. So, this study paves the way for further attention in investigating the participation of these new compounds in the pain inhibitory mechanisms. The most promising compounds 2 and 7 possess a therapeutical profile that enables their chemical scaffolds to be utilized for development of new NSAIDs.  相似文献   

10.
Parthenolide is an important sesquiterpene lactone with potent anticancer activities. In order to further improve its biological activity, a series of parthenolide semicarbazone or thiosemicarbazone derivatives was synthesized and evaluated for their anticancer activity. Derivatives were tested in vitro against 5 human tumor cell lines, and many of these showed higher cytotoxicity than parthenolide. Five compounds were further studied for their antitumor activity in mice. The in vivo result indicated that compound 4d showed both promising antitumor activity against mice colon tumor and small side effects on immune systems. The cell apoptosis and cell cycle distribution of compound 4d were also studied. Molecular docking studies revealed multiple interactions between 4d and NF-κB. Our findings demonstrate the potential of semicarbazones as a promising type of compounds with anticancer activity.  相似文献   

11.
The functional role of burst firing (i.e. the firing of packets of action potentials followed by quiescence) in sensory processing is still under debate. Should bursts be considered as unitary events that signal the presence of a particular feature in the sensory environment or is information about stimulus attributes contained within their temporal structure? We compared the coding of stimulus attributes by bursts in vivo and in vitro of electrosensory pyramidal neurons in weakly electric fish by computing correlations between burst and stimulus attributes. Our results show that, while these correlations were strong in magnitude and significant in vitro, they were actually much weaker in magnitude if at all significant in vivo. We used a mathematical model of pyramidal neuron activity in vivo and showed that such a model could reproduce the correlations seen in vitro, thereby suggesting that differences in burst coding were not due to differences in bursting seen in vivo and in vitro. We next tested whether variability in the baseline (i.e. without stimulation) activity of ELL pyramidal neurons could account for these differences. To do so, we injected noise into our model whose intensity was calibrated to mimic baseline activity variability as quantified by the coefficient of variation. We found that this noise caused significant decreases in the magnitude of correlations between burst and stimulus attributes and could account for differences between in vitro and in vivo conditions. We then tested this prediction experimentally by directly injecting noise in vitro through the recording electrode. Our results show that this caused a lowering in magnitude of the correlations between burst and stimulus attributes in vitro and gave rise to values that were quantitatively similar to those seen under in vivo conditions. While it is expected that noise in the form of baseline activity variability will lower correlations between burst and stimulus attributes, our results show that such variability can account for differences seen in vivo. Thus, the high variability seen under in vivo conditions has profound consequences on the coding of information by bursts in ELL pyramidal neurons. In particular, our results support the viewpoint that bursts serve as a detector of particular stimulus features but do not carry detailed information about such features in their structure.  相似文献   

12.
The discovery of a class of diheteroaromatic amines based on LY2835219 as cyclin-dependent kinase (CDK1/4/6) inhibitors was described. The series was found to have much more improved CDK1 inhibition and potent in vitro anti-proliferative effects against cancer cell lines. The synthesis and structure–activity relationship studies of these compounds were reported. One promising compound was selected to evaluate as a novel lead compound after in vitro and in vivo profiling.  相似文献   

13.
A series of N-(2-(3,4,5-trimethoxybenzyl)-benzoxazole-5-yl)benzamide derivatives (3a–3n) was synthesized and evaluated for its in vitro inhibitory activity against COX-1 and COX-2. The compounds with considerable in vitro activity (IC50 < 1 µM), were evaluated in vivo for their anti-inflammatory and ulcerogenic potential. Out of the fourteen newly synthesized compounds; 3b, 3d, 3e, 3h, 3l and 3m were found to be most potent COX-2 inhibitors in in vitro enzymatic assay with IC50 in the range of 0.14–0.69 µM. In vivo anti-inflammatory activity of these six compounds (3b, 3d, 3e, 3h, 3l and 3m) was assessed by carrageenan induced rat paw edema method. The compound 3b (79.54%), 3l (75.00%), 3m (72.72%) and 3d (68.18%) exhibited significant anti-inflammatory activity than standard drug ibuprofen (65.90%). Ulcerogenic activity with histopathological studies was performed, and the screened compounds demonstrated significant gastric tolerance than ibuprofen. Molecular Docking study was also performed with resolved crystal structure of COX-2 to understand the interacting mechanisms of newly synthesized inhibitors with the active site of COX-2 enzyme and the results were found to be in line with the biological evaluation studies of the compounds.  相似文献   

14.

Background

Insufficient angiogenesis and arteriogenesis in cardiac tissue after myocardial infarction (MI) is a significant factor hampering the functional recovery of the heart. To overcome this problem we screened for compounds capable of stimulating angiogenesis, and herein investigate the most active molecule, 5-Methoxyleoligin (5ML), in detail.

Methods and Results

5ML potently stimulated endothelial tube formation, angiogenic sprouting, and angiogenesis in a chicken chorioallantoic membrane assay. Further, microarray- and knock down- based analyses revealed that 5ML induces angiogenesis by upregulation of CYP26B1. In an in vivo rat MI model 5ML potently increased the number of arterioles in the peri-infarction and infarction area, reduced myocardial muscle loss, and led to a significant increase in LV function (plus 21% 28 days after MI).

Conclusion

The present study shows that 5ML induces CYP26B1-dependent angiogenesis in vitro, and arteriogenesis in vivo. Whether or not CYP26B1 is relevant for in vivo arteriogenesis is not clear at the moment. Importantly, 5ML-induced arteriogenesis in vivo makes the compound even more interesting for a post MI therapy. 5ML may constitute the first low molecular weight compound leading to an improvement of myocardial function after MI.  相似文献   

15.

Background and Purpose

Retention of substances from systemic circulation in the brain and testes are limited due to high levels of P-glycoprotein (P-gp) in the luminal membranes of brain and testes capillary endothelial cells. From a clinical perspective, P-gp rapidly extrudes lipophilic therapeutic agents, which then fail to reach efficacious levels. Recent studies have demonstrated that acute administration of selective serotonin reuptake inhibitors (SSRI) can affect P-gp function, in vitro and in vivo. However, little is known concerning the time-course of these effects or the effects of different SSRI in vivo.

Experimental Approach

The P-gp substrate, tritiated digoxin ([3H] digoxin), was co-administered with fluoxetine or sertraline to determine if either compound increased drug accumulation within the brains and testes of mice due to inhibition of P-gp activity. We undertook parallel studies in endothelial cells derived from brain microvessels to determine the dose-response and time-course of effects.

Key Results

In vitro, sertraline resulted in rapid and potent inhibition of P-gp function in brain endothelial cells, as determined by cellular calcein accumulation. In vivo, a biphasic effect was demonstrated. Brain accumulation of [3H] digoxin was increased 5 minutes after treatment with sertraline, but by 60 minutes after sertraline treatment, brain accumulation of digoxin was reduced compared to control. By 240 minutes after sertraline treatment brain digoxin accumulation was elevated compared to control. A similar pattern of results was obtained in the testes. There was no significant effect of fluoxetine on P-gp function, in vitro or in vivo.

Conclusions and Implications

Acute sertraline administration can modulate P-gp activity in the blood-brain barrier and blood-testes barrier. This clearly has implications for the ability of therapeutic agents that are P-gp substrates, to enter the brain when co-administered with SSRI.  相似文献   

16.
Wheat germ agglutinin (WGA) and Bowman-Birk soybean trypsin inhibitor represent potential transgene products for inducing pest resistance in plants. The effects of these molecules were studied on midgut esterase and protease activities from Apis mellifera L., a major insect pollinator. Trypsin inhibitor and WGA did not exhibit an acute toxicity in A. mellifera. In vivo, trypsin inhibitor caused a decrease in the amount of trypsin activity and did not have a significant effect on esterase activity. In vitro, trypsin inhibitor inhibited about 80% of non-specific protease activity and 100% of trypsin activity. In vivo, WGA at high concentration in food (1 mg/ml) elicited a large decrease in trypsin activity and did not have a significant effect on esterase activity. In vitro, WGA did not have any significant effect on trypsin and non-specific protease activities but slightly activated esterase activity.  相似文献   

17.
In the studied a series novel of lazabemide derivatives were designed, synthesized and evaluated as inhibitors of monoamine oxidase (MAO-A or MAO-B). These compounds used lazabemide as the lead compound, and the chemistry structures were modified by used the bioisostere and modification of compound with alkyl principle. The two types of inhibitors (inhibition of MAO-A and inhibition of MAO-B) were screened by inhibition activity of MAO. In vitro experiments showed that compounds 3a, 3d and 3f had intensity inhibition the biological activity of MAO-A, while compounds 3i and 3m had intensity inhibition the biological activity of MAO-B. It could be seen from the data of inhibition activity experiments in vitro, that the compound 3d was IC50?=?3.12?±?0.05?μmol/mL of MAO-A and compound 3m was IC50?=?5.04?±?0.06?μmol/mL. In vivo inhibition activity experiments were conducted to evaluate the inhibitory activity of compounds 3a, 3d, 3f, 3i and 3m by detecting the contents of 5-HT, NE, DA and activity of MAO-A and MAO-B in plasma and brain tissue. In vivo inhibition activity evaluation results showed that the compounds 3a, 3d, 3f, 3i and 3m had increased the contents of 5-HT, NE and DA in plasma and brain tissues. Meanwhile, the determination results activity of MAO in plasma and brain tissue showed that the compounds 3a, 3d, and 3f had a significant inhibitory effect on the activity of MAO-A, while the compounds 3i and 3m showed inhibitory effect on the activity of MAO-B. This study provided a new inhibitors for inhibiting of MAO activity.  相似文献   

18.
Dipeptidyl peptidase-IV (DPP-4) is a validated target for T2DM treatment. We previously reported a novel series of triazole-based uracil derivatives bearing aliphatic carboxylic acids with potent DPP-4 inhibitory activities in vitro, but these compounds showed poor hypoglycemic effects in vivo. Herein we further optimized the triazole moiety by amidation of the carboxylic acid to improve in vivo activities. Two series of compounds 3a-f and 4a-g were designed and synthesized. By screening in DPP-4, compound 4c was identified as a potent DPP-4 inhibitor with the IC50 value of 28.62 nM. Docking study revealed compound 4c has a favorable binding mode and interpreted the SAR of these analogs. DPP-8 and DPP-9 tests indicated compound 4c had excellent selectivity over DPP-8 and DPP-9. Further in vivo evaluations revealed that compound 4c showed more potent hypoglycemic activity than its corresponding carboxylic acid in ICR mice and dose-dependently reduced glucose levels in type 2 diabetic C57BL/6 mice. The overall results have shown that compound 4c could be a promising lead for further development of novel DPP-4 agents treating T2DM.  相似文献   

19.
We report a series of new glitazones incorporated with phenylalanine and tyrosine. All the compounds were tested for their in vitro glucose uptake activity using rat-hemidiaphragm, both in presence and absence of insulin. Six of the most active compounds from the in vitro screening were taken forward for their in vivo triglyceride and glucose lowering activity against dexamethazone induced hyperlipidemia and insulin resistance in Wistar rats. The liver samples of rats that received the most active compounds, 23 and 24, in the in vivo studies, were subjected to histopathological examination to assess their short term hepatotoxicity. The investigations on the in vitro glucose uptake, in vivo triglyceride and glucose lowering activity are described here along with the quantitative structure–activity relationships.  相似文献   

20.
Strained unusual amino acid derived tetrapeptides were synthesized as mimics of GLYX-13, a clinical candidate for neuroprotective and anti-depressant properties, were studied. The synthesized compounds were screened for neurite growth and anti-depressant properties in vitro and in vivo respectively comparing with the parent GLYX-13 compound. Neurite growth property was assessed by neurite length and anti-depressant property by percentage of immobility in forced swim test, a behavioural assay. Mechanistic insights about protein–ligand interactions were obtained using molecular docking study. Based on the in vitro and in vivo screening data and molecular docking study, a new analogue of GLYX-13, Compound 11a has been found to be as good as the parent compound in all respects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号