首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest.  相似文献   

2.
Protocylindrocorpus dendrophilus n. sp. is described from xylem samples taken from beetle infested slash pine (Pinus elliottii Engelmann var. elliottii) in Central Louisiana. It is similar to P. goodeyi (Rühm) Paramonov, but differs by the possession of a protuberant and more posteriorly located vulva and in the position of the caudal papillae. Morphometrics of the male and female are presented.  相似文献   

3.
A comparison of untreated and nematicide-treated soil for soybean production revealed that Meloidogyne incognita hastened crop maturity and reduced plant ht, seed wt, and yield. Reductions of yield varied from 32-90% depending on cultivar susceptibility. DBCP was more consistent in increasing crop performance than organo-phosphale or oxime carbamate nematicides. Greatest yield increases were produced by nematicidal treatment of soils planted to soybean cultivars with the lowest susceptibility.  相似文献   

4.
Nitrogen (N) resorption is a key strategy for conserving N in forests, and is often affected by soil nutrient condition and N sink strength within the plant. However, our understanding of the age-related pattern of N resorption and how increasing N deposition will affect this pattern is limited. Here, we investigated N resorption along a chronosequence of stands ranging in age from 2 to 100 years old, and conducted a 4-year exogenous N input experiment in stands at age class 11, 20, and 45 in a Larix Principis-rupprechtii plantation in north China. We found a logarithmic increase in leaf N resorption efficiency (NRE) and green leaf N concentration, and a logarithmic decrease in senesced-leaf N concentration along the stand-age chronosequence. Leaf NRE was negatively correlated with plant-available N concentration. Stand-level N resorption was positively correlated with the annual N requirement for tree growth. N resorption contributed to 45, 62, and 68% of the annual N supply in the 11-, 20-, and 45-year-old stands, respectively. Our exogenous N input experiment showed that leaf NRE in the 11- and 20-year-old stands decreased 17 and 12% following a 50-kg N ha?1 y?1 input. However, leaf NRE was not affected in the 45-year-old stand. The increases in leaf NRE and the contribution of N resorption to annual N supply along stand ages suggested that, with stand development, tree growth depends more on N resorption to supply its N need. Furthermore, the leaf NRE of mature stand was not decreased under exogenous N input, suggesting that mature stands can be stronger sinks for N deposition than young stands due to their higher capacity to retain the deposited N within plants via internal cycle. Ignoring age-related N use strategies can lead to a bias in N cycle models when evaluating forest net primary production under increasing global N deposition.  相似文献   

5.
6.
7.
为探讨桉树(Eucalyptus spp.)人工林土壤呼吸及其对气象因子的响应,采用LI-8100A土壤碳通量自动测量系统,对雷州半岛北部尾巨桉(E.urophylla×E.grandis)人工林的土壤呼吸速率进行监测。结果表明,尾巨桉人工林土壤呼吸速率具有明显的时间变化特征,表现为单峰曲线型变化趋势,2016年5月和翌年2月分别达到最高值[(3.17±0.12)μmol m–2s–1]和最低值[(1.18±0.16)μmol m–2s–1],年均值为(2.34±0.70)μmol m–2s–1。根据相关系数,土壤呼吸速率的影响因子以土壤温度气温气压光合有效辐射饱和水汽压差土壤湿度。主成分分析表明,温度、光合有效辐射等引起的热能量变异和土壤湿度等引起的水分变异是土壤呼吸速率的主要影响因子。回归分析表明,气象因子综合模型能解释土壤呼吸速率94.0%的变异情况,模型可靠性较高。尾巨桉林土壤表面全年CO2通量为893.31 g C m–2a–1。气象因子的综合作用能更全面地解释土壤呼吸的时间变异情况。  相似文献   

8.
Transformation frequencies of a mariner-based transposon system in Rickettsia rickettsii were determined using a plaque assay system for enumeration and isolation of mutants. Sequence analysis of insertion sites in both R. rickettsii and R. prowazekii indicated that insertions were random. Transposon mutagenesis provides a useful tool for rickettsial research.  相似文献   

9.
10.
The pine wilt nematode, Bursaphelenchus xylophilus, has been cultured axenically in vitro on soy peptone/yeast extract or modified Caenorhabditis medium supplemented with cholesterol and hemoglobin. Although growth, development and reproduction were best in soy peptone/yeast extract medium, satisfactory population size increases were observed in the chemically defined Caenorhaditis medium.  相似文献   

11.
Changes in the carbohydrate (glucose, trehalose, and glycogen) and total protein contents of eggs retained within Heterodera glycines cysts were monitored monthly in a field microplot experiment conducted from March 1993 to March 1995. Treatments included two near-isogenic lines of soybean cv. Clark differing for date of maturity, and one corn hybrid. The soybean lines were planted in microplots infested with H. glycines at a high average initial population density (Pi) (23,810 eggs/100 cm³ soil), and the corn was planted in microplots infested at high (24,640) and low (5,485) Pi. Soil temperatures at 15 cm depth and rainfall were monitored. Carbohydrate contents varied in the same pattern, with the highest levels measured before planting (May) and after harvest (October) in both years. Neither Pi nor soybean isoline had an effect on any measured response, but the carbohydrate contents of eggs from corn and soybean microplots differed during the overwinter (October-May) periods (P < 0.0001). Trehalose accumulation was negatively correlated with soil temperature (r = -0.78 and r = -0.84, P = 0.0001, July through November 1993 and 1994, respectively), which reflects its role as a cryoprotectant. In contrast to the pattern for carbohydrates, total protein was lowest before planting and after harvest, and highest (>20 μg/1,000 eggs) June through October. Protein content was unaffected by plant cultivar or species. Protein and carbohydrate levels in H. glycines eggs showed seasonal changes that appeared to be primarily temperature-dependent.  相似文献   

12.
Field-collected adults of the southern pine sawyer, Monochamus titillator (F.) (Coleoptera: Cerambycidae), naturally infested with fourth-stage juveniles (dauerlarvae) of the pinewood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer, 1934) Nickle, 1970, were maturation fed on excised shoots of typical slash pine, Pinus elliottii Engelm. var elliottii, for 21 days. During August 1981, a male and female adult beetle were held in a sleeve cage placed on the terminal of a side branch of each of seven replicate, healthy 10-year-old slash pine trees. All seven branch terminals showed evidence of beetle feeding on the bark after 1 week, and pinewood nematodes were present in wood samples taken near these feeding sites. Four of the seven trees showed wilt symptoms in 4-6 weeks and died about 9 weeks after beetle feeding. Pinewood nematodes were recovered from the roots and trunks of the dead trees. Each of seven replicate slash pine log bolts was enclosed in a jar with a pair of the same beetles used in the sleeve cages. After 1 week, wood underlying beetle oviposition sites in the bark of all replicate log bolts was infested with the pinewood nematode.  相似文献   

13.
Effects of soil type, particle size, temperature, and moisture on the reproduction of Belonolaimus longicaudatus were investigated under greenhouse conditions. Nematode increases occurred only in soils with a minimum of 80% sand and a maximum of 10% clay. Optimum soil particle size for reproduction of the Tarboro, N.C. and Tifton, Ga. populations of the nematode was near that of 120-370 μm (65-mesh) silica sand. Reproduction was greatest at 25-30 C. Some reproduction by the Tifton, Ga. population occurred at 35 C, whereas the Tarboro, N.C. population declined, as compared to the initial inoculum. Both populations reproduced slightly at 20 C. Nematode reproduction was greater at a moisture level of 7% than at a high of 30% or a low of 2%. Reproduction occurred at the high moisture level only when the nutrient solution was aerated.  相似文献   

14.
Precipitation and temperature are important drivers of soil respiration. The role of moisture and temperature are generally explored at seasonal or inter-annual timescales; however, significant variability also occurs on hourly to daily time-scales. We used small (1.54 m2), throughfall exclusion shelters to evaluate the role soil moisture and temperature as temporal controls on soil CO2 efflux from a humid tropical forest in Puerto Rico. We measured hourly soil CO2 efflux, temperature and moisture in control and exclusion plots (n = 6) for 6-months. The variance of each time series was analyzed using orthonormal wavelet transformation and Haar-wavelet coherence. We found strong negative coherence between soil moisture and soil respiration in control plots corresponding to a two-day periodicity. Across all plots, there was a significant parabolic relationship between soil moisture and soil CO2 efflux with peak soil respiration occurring at volumetric soil moisture of approximately 0.375 m3/m3. We additionally found a weak positive coherence between CO2 and temperature at longer time-scales and a significant positive relationship between soil temperature and CO2 efflux when the analysis was limited to the control plots. The coherence between CO2 and both temperature and soil moisture were reduced in exclusion plots. The reduced CO2 response to temperature in exclusion plots suggests that the positive effect of temperature on CO2 is constrained by soil moisture availability.  相似文献   

15.
The effect of soil moisture on penetration, development, and reproduction of Heterodera cajani on pigeonpea (cv. ICPL 87) was investigated in growth chambers held at 20 and 25 C, and in a greenhouse where temperature fluctuated between 25 and 32 C. Averaged across temperatures, the percentage of juveniles that penetrated roots was 34.3, 31.8, 8.8, and 3.7% at 24, 32, 16, and 40% soil moisture levels, respectively. Numbers of females per root system 4 weeks after infesting soil with second-stage juveniles was 79.6 at 24%, 65.3 at 32%, 26.1 at 16%, and 2.9 at 40% soil moisture. Nematode reproduction was greatest (P = 0.001) at 24% soil moisture and 25 C. Reproductive factor was 19.4 at 24%, 15.2 at 32%, 5.7 at 16%, and 0.5 at 40% soil moisture level. Nematode penetration, development, and reproduction at different moisture levels were greater (P = 0.01) at 25 and 25-32 C than at 20 C. Plant growth was retarded at 40% soil moisture and 20 C in comparison to that at 24 and 32% moisture levels and 25 C. This information on influence of temperature and soil moisture will be helpful in developing models for predicting changes in H. cajani densities in pigeonpea fields during rainy and postrainy dry seasons in the semi-arid tropics.  相似文献   

16.
Kanninen, M. 1985. Shoot elongation in Scots pine: Diurnal variationsand response to temperature.—J. exp. Bot. 36: 1760–1770. Time series analysis is used to study the diurnal variationsin the rate of shoot elongation of Scots pine (Pinus sylvestrisL.) seedlings, and its response to temperature. The shoot elongation of three 5-year-old Scots pine seedlingswas measured at 2 h intervals over a 12 d period in June 1979.Ambient temperature, measured with a thermocouple, was continuouslyrecorded during the same period. The measurements were carriedout in the field. Time series analysis of the data was carried out by estimatedauto-correlation and partial auto-correlation functions. A multiplicative‘seasonal’ model was applied to both the input andoutput series to ‘prewhiten’ the data set. Serialcross-correlation analysis of the prewhitened series was usedto identify the structure of the transfer function model betweentemperature and growth rate. There was a phase shift between the air temperature and shootextension. The cross-correlation function peaked at 2 h lagvalue. The influence of temperature on the growth rate was adequatelydescribed by a first-order transfer function model. The characteristicfeature of the model was a time constant of 3.3 h and a basetemperature of 6.3 °C for the response of shoot elongationto temperature. Key words: Scots pine, Pinus sylvestris L., shoot elongation, temperature response, time-series analysis  相似文献   

17.
18.
Second-stage juveniles (J2) of races 1 and 2 of Meloidogyne chiiwoodi and M. hapla readily penetrated roots of Thor alfalfa and Columbian tomato seedlings; however, few individuals of M. chitwoodi race 1 were able to establish feeding sites and mature on alfalfa. Histopathological studies indicate that J2 of race 1 either failed to initiate feeding sites or they caused cell enlargement without typical cell wall thickening. The protoplasm of these cells coagulated, and juveniles of race 1 did not develop beyond the swollen J2 stage. A few females of race 1 fed on small giant cells and deposited a few eggs at least 20 and 30 days later than M. chitwoodi race 2 and M. hapla, respectively. Failure of race 1 to establish feeding sites was related to egression of J2 from the roots. The M. chitwoodi race 1 J2 egression from alfalfa roots was higher than egression of race 2 and M. hapla. Egression of J2 of M. chitwoodi races 1 and 2 from tomato roots was similar and higher than that of M. hapla. Thus egression plays an important role in the host-parasite relationship of M. chitwoodi and alfalfa.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号