首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tuberculosis is characterized by severe immunosuppression of the host macrophages, resulting in the loss of the host protective immune responses. During Mycobacterium tuberculosis infection, the pathogen modulates C-C Chemokine Receptor 5 (CCR5) to enhance IL-10 production, indicating the possible involvement of CCR5 in regulation of the host immune response. Here, we found that Mycobacterium infection significantly increased CCR5 expression in macrophages there by facilitating the activation of its downstream signaling. These events culminated in up-regulation of the immunosuppressive cytokine IL-10 production, which was further associated with the down-regulation of macrophage MHC-II expression along with the up-regulation of CCR5 expression via engagement of STAT-3 in a positive feedback loop. Treatment of macrophages with CCR5 specific siRNA abrogated the IL-10 production and restored MHCII expression. While, in vivo CCR5 silencing was also effective for the restoration of host immune responses against tuberculosis. This study demonstrated that CCR5 played a very critical role for the immune subversion mechanism employed by the pathogen.  相似文献   

3.
BackgroundRenal renin-angiotensin system (RAS) activation is one of the important pathogenic mechanisms in the development of diabetic nephropathy in type 2 diabetes. The aim of this study was to investigate the effects of a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, dapagliflozin, on renal RAS in an animal model with type 2 diabetes.MethodsDapagliflozin (1.0 mg/kg, OL-DA) or voglibose (0.6 mg/kg, OL-VO, diabetic control) (n = 10 each) was administered to Otsuka Long-Evans Tokushima Fatty (OLETF) rats for 12 weeks. We used voglibose, an alpha-glucosidase inhibitor, as a comparable counterpart to SGLT2 inhibitor because of its postprandial glucose-lowering effect without proven renoprotective effects. Control Long-Evans Tokushima Otsuka (LT) and OLETF (OL-C) rats received saline (n = 10, each). Changes in blood glucose, urine albumin, creatinine clearance, and oxidative stress were measured. Inflammatory cell infiltration, mesangial widening, and interstitial fibrosis in the kidney were evaluated by histological analysis. The effects of dapagliflozin on renal expression of the RAS components were evaluated by quantitative RT-PCR in renal tissue.ResultsAfter treatment, hyperglycemia and urine microalbumin levels were attenuated in both OL-DA and OL-VO rather than in the OL-C group (P < 0.05). The urine angiotensin II (Ang II) and angiotensinogen levels were significantly decreased following treatment with dapagliflozin or voglibose, but suppression of urine Ang II level was more prominent in the OL-DA than the OL-VO group (P < 0.05). The expressions of angiotensin type 1 receptor and tissue oxidative stress markers were markedly increased in OL-C rats, which were reversed by dapagliflozin or voglibose (P < 0.05, both). Inflammatory cell infiltration, mesangial widening, interstitial fibrosis, and total collagen content were significantly increased in OL-C rats, which were attenuated in OL-DA group (P < 0.05).ConclusionDapagliflozin treatment showed beneficial effects on diabetic nephropathy, which might be via suppression of renal RAS component expression, oxidative stress and interstitial fibrosis in OLETF rats. We suggest that, in addition to control of hyperglycemia, partial suppression of renal RAS with an SGLT2 inhibitor would be a promising strategy for the prevention of treatment of diabetic nephropathy.  相似文献   

4.
Abstract: Incubation of 10 m M I-methyl-4-phenylpyridinium (MPP+) with sonicated beef heart mitochondria caused an irreversible time-dependent decrease in NADH-ubiquinone-l (CoQ1) reductase activity (52% inhibition after 1 h). Inclusion of glutathione, ascorbate, or catalase in the incubation mixture protected the NADH-CoQ1 reductase activity. These results suggest that the interaction of MPP+ with complex I induces free radical generation, which in turn leads to the irreversible inhibition of complex I activity. The generation of free radicals by neurotoxin-induced inhibition of complex I has important implications for our interpretation of the increased oxidative stress observed in Parkinson's disease substantia nigra and for our understanding of the cause(s) of dopaminergic cell death in this disorder.  相似文献   

5.
Cyanide is produced concomitantly with ethylene biosynthesis. Arabidopsis (Arabidopsis thaliana) detoxifies cyanide primarily through the enzyme β-cyanoalanine synthase, mainly by the mitochondrial CYS-C1. CYS-C1 loss of function is not toxic for the plant and leads to an increased level of cyanide in cys-c1 mutants as well as a root hairless phenotype. The classification of genes differentially expressed in cys-c1 and wild-type plants reveals that the high endogenous cyanide content of the cys-c1 mutant is correlated with the biotic stress response. Cyanide accumulation and CYS-C1 gene expression are negatively correlated during compatible and incompatible plant-bacteria interactions. In addition, cys-c1 plants present an increased susceptibility to the necrotrophic fungus Botrytis cinerea and an increased tolerance to the biotrophic Pseudomonas syringae pv tomato DC3000 bacterium and Beet curly top virus. The cys-c1 mutation produces a reduction in respiration rate in leaves, an accumulation of reactive oxygen species, and an induction of the alternative oxidase AOX1a and pathogenesis-related PR1 expression. We hypothesize that cyanide, which is transiently accumulated during avirulent bacterial infection and constitutively accumulated in the cys-c1 mutant, uncouples the respiratory electron chain dependent on the cytochrome c oxidase, and this uncoupling induces the alternative oxidase activity and the accumulation of reactive oxygen species, which act by stimulating the salicylic acid-dependent signaling pathway of the plant immune system.The gaseous hormone ethylene is known to regulate multiple physiological and developmental processes in plants, such as seedling emergence, leaf and flower senescence, climacteric fruit ripening, and organ abscission. Ethylene is also involved in the response of plants to abiotic and biotic stresses (Wang et al., 2002; Broekaert et al., 2006; van Loon et al., 2006). Enhanced ethylene production is an early, active response of plants to the perception of pathogen attack and is associated with the induction of defense reactions. During ethylene biosynthesis, S-adenosyl-l-Met is converted to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase. ACC is finally oxidized by ACC oxidase to form ethylene, carbon dioxide, and cyanide (Hartley et al., 1998; Wang et al., 2002). Hydrogen cyanide is a colorless and highly volatile liquid. The anion cyanide is toxic and renders the cells of an organism unable to use oxygen, primarily through the chelation of divalent and trivalent metal ions in the prosthetic groups of several metalloenzymes, including copper/zinc superoxide dismutase, catalase, nitrate and nitrite reductase, nitrogenase, peroxidases, and the mitochondrial cytochrome c oxidase (Isom and Way, 1984; Donato et al., 2007).Cyanide must be rapidly detoxified and metabolized by the plant to keep the concentration below toxic levels. Plants detoxify cyanide primarily through the enzyme β-cyanoalanine synthase (CAS), for which considerable levels of activity are constitutively found in many plant species. Rhodanese and mercaptopyruvate sulfurtransferase activities also make minor contributions to the cyanide detoxification process (Miller and Conn, 1980). CAS is a pyridoxal phosphate-dependent enzyme that converts Cys and cyanide to hydrogen sulfide and β-cyanoalanine, which is later converted to Asn, Asp, and ammonia by NIT4 class nitrilases (Piotrowski, 2008). Arabidopsis (Arabidopsis thaliana) plants carry the mitochondrial CAS CYS-C1 (At3g61440; Watanabe et al., 2008), which belongs to the family of β-substituted Ala synthase enzymes. The family also includes the three major O-acetyl-serine(thiol)lyase enzymes OAS-A1 (At4g14880), OAS-B (At2g43750), and OAS-C (At3g59760; Watanabe et al., 2008), the l-Cys desulfhydrase DES1 (At5g28030; Álvarez et al., 2010), the S-sulfocysteine synthase CS26 (At3g03630; Bermúdez et al., 2010), and the functionally unknown cytosolic isoforms CYS-D1 (At3g04940) and CYS-D2 (At5g28020). Mutations in CYS-C1 result in plants that accumulate cyanide and that display abnormal root hair (García et al., 2010), suggesting that cyanide has a signaling role in root development. The lack of the mitochondrial O-acetyl-serine(thiol)lyase isoform OAS-C, which is necessary to detoxify the sulfide released by the CAS activity, causes an accumulation of sulfide and cyanide and a root phenotype similar to the cys-c1 loss-of-function mutant (Álvarez et al., 2012b).Several authors have suggested that cyanide could act as a regulator of other metabolic processes in addition to performing the described role in plant root development (Siegien and Bogatek, 2006). It has been observed that this molecule is released during seed germination and that exogenously applied hydrogen cyanide breaks seed dormancy in several plants (Cohn and Hughes, 1986; Fol et al., 1989; Bogatek et al., 1991; Bethke et al., 2006). The role of cyanide as a regulatory molecule is not restricted to plants, and it has been demonstrated that cyanide is generated in leukocytes from Gly via a peroxidase (Stelmaszyńska, 1986) as well as in the central nervous system, where it has been hypothesized to act as a neuromodulator (Gunasekar et al., 2000; Cipollone and Visca, 2007). Cyanide production can be stimulated by opiates and decreased by treatment with muscarinic receptor agonists (Borowitz et al., 1997; Gunasekar et al., 2004).Despite the variety of known functions for cyanide in different organisms, the role of cyanide production in plants seems to have been unevaluated to date. In cyanogenic plants, cyanide is produced during the degradation of cyanogenic lipids and from the catabolism of cyanogenic glycosides (Poulton, 1990). Cyanide and cyanogenic compounds play an important role in plant defense against herbivores (Zagrobelny et al., 2008). In noncyanogenic plants, cyanide is a coproduct of ethylene biosynthesis. The molecule is also produced during the biosynthesis of camalexin, a phytoalexin formed in Arabidopsis plants upon infection by a large variety of microorganisms, including bacteria, fungi, and oomycetes (Glawischnig, 2007). During camalexin biosynthesis, the Trp-derived intermediate indole-3-acetonitrile is conjugated with Cys and serves as a substrate for the cytochrome P450 enzyme CYP71B15. This enzyme catalyzes the formation of the thiazoline ring as well as the release of cyanide and subsequent oxidative decarboxylation of dihydrocamalexic acid to camalexin (Glawischnig, 2007; Böttcher et al., 2009). Since both cyanide sources, camalexin and ethylene, are produced after pathogen attack, cyanide should be produced at significant levels during the plant response to pathogens. It has been shown that exogenous cyanide can enhance the resistance of tobacco (Nicotiana tabacum) and Arabidopsis leaves to Tobacco mosaic virus and Turnip vein clearing virus, respectively (Chivasa and Carr, 1998; Wong et al., 2002). Recently, it has been demonstrated that exogenously applied cyanide increases the resistance of young rice (Oryza sativa) plants to blast fungus infection, suggesting that cyanide rather than ethylene contributes to plant resistance (Seo et al., 2011).This work aims to further investigate the role of endogenously produced cyanide in the plant immune response by analyzing the behavior of Arabidopsis knockout mutants of the mitochondrial CAS CYS-C1 and the regulation of CYS-C1 in response to pathogen attack.  相似文献   

6.
DNA damage response (DDR) emerges as a biological tumorigenesis barrier in early stages of cancer development, and a selective pressure that favors outgrowth of malignant clones with defects in the genome maintenance machinery, such as mutations of p53 and other DDR components. Recent studies indicate that the DDR barrier is not alarmed universally among early noninvasive lesions, but rather responds to high-risk tumorigenic threats that occur in high-grade, pre-malignant lesions that are generally more likely to develop into bona fide malignancies. In addition, while the DDR barrier appears to operate in major types of cancer, such as carcinomas of the lung, breast and colon, DDR activation is rare at any stage of progression among testicular germ-cell tumors. Together with observations that several, but not all oncogenic insults are capable of activating the DDR machinery, these new results point to existence of a critical threshold of such oncogene-induced DNA damage. It seems that only cells and lesions that experience DNA replication stress and DNA damage above such threshold activate the cellular senescence or cell death pathways within the DDR machinery. The higher load of DNA damage may also contribute to cancer predisposition in families with inherited heterozygous defects in the DDR barrier, such as in ATM, BRCA1, BRCA2, p53 and other genes. We propose that carriers of such DDR defects may be more prone to malignancy due to ‘conditional haploinsufficiency’: such partial defects may be asymptomatic in normal tissues, yet they may become manifest under conditions of supra-threshold endogenous DNA damage in oncogene-driven pre-malignant lesions.  相似文献   

7.
8.
Our previously reported phase I clinical trial with the allogeneic gene–modified tumor cell line RCC-26/CD80/IL-2 showed that vaccination was well tolerated and feasible in metastatic renal cell carcinoma (RCC) patients. Substantial disease stabilization was observed in most patients despite a high tumor burden at study entry. To investigate alterations in immune responses that might contribute to this effect, we performed an extended immune monitoring that included analysis of reactivity against multiple antigens, cytokine/chemokine changes in serum and determination of the frequencies of immune suppressor cell populations, including natural regulatory T cells (nTregs) and myeloid-derived suppressor cell subsets (MDSCs). An overall immune response capacity to virus-derived control peptides was present in 100% of patients before vaccination. Vaccine-induced immune responses to tumor-associated antigens occurred in 75% of patients, demonstrating the potent immune stimulatory capacity of this generic vaccine. Furthermore, some patients reacted to peptide epitopes of antigens not expressed by the vaccine, showing that epitope-spreading occurred in vivo. Frequencies of nTregs and MDSCs were comparable to healthy donors at the beginning of study. A significant decrease of nTregs was detected after vaccination (p = 0.012). High immune response rates, decreased frequencies of nTregs and a mixed T helper 1/T helper 2 (TH1/TH2)-like cytokine pattern support the applicability of this RCC generic vaccine for use in combination therapies.  相似文献   

9.
外周神经损伤可引起对神经系统的一种适应不良反应,其产生神经病理性痛的主要特点为痛觉增敏和异常疼痛。目前文献报道多种机制涉及此反应,包括离子通道改变引起的异常放电、突触易化、多种轴突水平抑制作用缺失导致的中枢敏化、神经元细胞的凋亡以及异常的突触连接等结构的改变,另外神经损伤引起的神经免疫之间的相互作用在神经病理性痛的持续性发展中发挥着不可替代的作用。了解外周神经损伤引起的神经病理性的发病机制将对我们寻找治疗靶点和治疗策略提供坚实的理论基础。  相似文献   

10.
11.
12.
13.

Background

Although influenza causes significant morbidity and mortality in the elderly, the factors underlying the reduced vaccine immunogenicity and efficacy in this age group are not completely understood. Age and immunosenescence factors, and their impact on humoral immunity after influenza vaccination, are of growing interest for the development of better vaccines for the elderly.

Methods

We assessed associations between age and immunosenescence markers (T cell receptor rearrangement excision circles – TREC content, peripheral white blood cell telomerase – TERT expression and CD28 expression on T cells) and influenza A/H1N1 vaccine-induced measures of humoral immunity in 106 older subjects at baseline and three timepoints post-vaccination.

Results

TERT activity (TERT mRNA expression) was significantly positively correlated with the observed increase in the influenza-specific memory B cell ELISPOT response at Day 28 compared to baseline (p-value=0.025). TREC levels were positively correlated with the baseline and early (Day 3) influenza A/H1N1-specific memory B cell ELISPOT response (p-value=0.042 and p-value=0.035, respectively). The expression and/or expression change of CD28 on CD4+ and/or CD8+ T cells at baseline and Day 3 was positively correlated with the influenza A/H1N1-specific memory B cell ELISPOT response at baseline, Day 28 and Day 75 post-vaccination. In a multivariable analysis, the peak antibody response (HAI and/or VNA at Day 28) was negatively associated with age, the percentage of CD8+CD28low T cells, IgD+CD27- naïve B cells, and percentage overall CD20- B cells and plasmablasts, measured at Day 3 post-vaccination. The early change in influenza-specific memory B cell ELISPOT response was positively correlated with the observed increase in influenza A/H1N1-specific HAI antibodies at Day 28 and Day 75 relative to baseline (p-value=0.007 and p-value=0.005, respectively).

Conclusion

Our data suggest that influenza-specific humoral immunity is significantly influenced by age, and that specific markers of immunosenescence (e.g., the baseline/early expression of CD28 on CD4+ and/or CD8+ T cells and T cell immune abnormalities) are correlated with different humoral immune response outcomes observed after vaccination in older individuals, and thus can be potentially used to predict vaccine immunogenicity.  相似文献   

14.
15.
The role of hyperleptinemia in cardiovascular diseases is well known; however, in the renal tissue, the exact site of leptin’s action has not been established. This study was conducted to assess the effect of leptin treatment for 7 and 28 days on renal function and morphology and the participation of angiotensin II (Ang II), through its AT1 receptor. Rats were divided into four groups: sham, losartan (10 mg/kg/day, s.c.), leptin (0.5 mg/kg/day for the 7 days group and 0.25 mg/kg/day for the 28 days group) and leptin plus losartan. Plasma leptin, Ang II and endothelin 1 (ET-1) levels were measured using an enzymatic immuno assay. The systolic blood pressure (SBP) was evaluated using the tail-cuff method. The renal plasma flow (RPF) and the glomerular filtration rate (GFR) were determined by p-aminohippuric acid and inulin clearance, respectively. Urinary Na+ and K+ levels were also analyzed. Renal morphological analyses, desmin and ED-1 immunostaining were performed. Proteinuria was analyzed by silver staining. mRNA expression of renin-angiotensin system (RAS) components, TNF-α and collagen type III was analyzed by quantitative PCR. Our results showed that leptin treatment increased Ang II plasma levels and progressively increased the SBP, achieving a pre-hypertension state. Rats treated with leptin 7 days showed a normal RPF and GFR, but increased filtration fraction (FF) and natriuresis. However, rats treated with leptin for 28 showed a decrease in the RPF, an increase in the FF and no changes in the GFR or tubular function. Leptin treatment-induced renal injury was demonstrated by: glomerular hypertrophy, increased desmin staining, macrophage infiltration in the renal tissue, TNF-α and collagen type III mRNA expression and proteinuria. In conclusion, our study demonstrated the progressive renal morphological changes in experimental hyperleptinemia and the interaction between leptin and the RAS on these effects.  相似文献   

16.
Innate immunity constitutes the first line of the host defense after pathogen invasion. Viruses trigger the expression of interferons (IFNs). These master antiviral cytokines induce in turn a large number of interferon-stimulated genes, which possess diverse effector and regulatory functions. The IFN system is conserved in all tetrapods as well as in fishes, but not in tunicates or in the lancelet, suggesting that it originated in early vertebrates. Viral diseases are an important concern of fish aquaculture, which is why fish viruses and antiviral responses have been studied mostly in species of commercial value, such as salmonids. More recently, there has been an interest in the use of more tractable model fish species, notably the zebrafish. Progress in genomics now makes it possible to get a relatively complete image of the genes involved in innate antiviral responses in fish. In this review, by comparing the IFN system between teleosts and mammals, we will focus on its evolution in vertebrates.  相似文献   

17.
18.
The kidneys and liver are the major routes for organic anion elimination. We have recently shown that acute obstructive jaundice is associated with increased systemic and renal elimination of two organic anions, p-aminohippurate and furosemide, principally excreted through urine. This study examined probable adaptive mechanisms involved in renal elimination of bromosulfophthalein (BSP), a prototypical organic anion principally excreted in bile, in rats with acute obstructive jaundice. Male Wistar rats underwent bile duct ligation (BDL rats). Pair-fed sham-operated rats served as controls. BSP renal clearance was performed by conventional techniques. Renal organic anion-transporting polypeptide 1 (Oatp1) expression was evaluated by immunoblotting and IHC. Excreted, filtered, and secreted loads of BSP were all higher in BDL rats compared with Sham rats. The higher BSP filtered load resulted from the increase in plasma BSP concentration in BDL rats, because glomerular filtration rate showed no difference with the Sham group. The increase in the secreted load might be explained by the higher expression of Oatp1 observed in apical membranes from kidneys of BDL animals. This likely adaptation to hepatic injury, specifically in biliary components elimination, might explain, at least in part, the huge increase in BSP renal excretion observed in this experimental model. (J Histochem Cytochem 57:449–456, 2009)  相似文献   

19.
Abstract: Neurotrophic factors have been shown to support the survival and promote the recovery of injured neurons both in vivo and in vitro. Here, we investigated whether glial cell line-derived neurotrophic factor (GDNF) and basic fibroblast growth factor (bFGF) could modify the damage to dopamine (DA) neurons in mesencephalic cultures caused by the neurotoxin 6-hydroxydopamine (6-OHDA). The data show that bFGF, but not GDNF, effectively protected DA neurons from 6-OHDA toxicity. Because bFGF is a glial mitogen, whereas GDNF is not, we tested whether glial cells participated in bFGF neuroprotection. Inhibition of glial cell proliferation completely prevented the protective effect of bFGF. Because oxidative events have been associated with 6-OHDA-induced damage, we examined the levels of glutathione (GSH) in control and bFGF-treated cultures. Cultures treated with bFGF had higher levels of GSH, which increased even further in response to 6-OHDA exposure. Control cultures failed to up-regulate GSH levels after 6-OHDA, suggesting a relationship between increased GSH levels and protection from 6-OHDA. Inhibition of glial cell proliferation prevented the rise in GSH in bFGF-treated cultures and abolished the increase after 6-OHDA treatment. Protection from 6-OHDA by bFGF was also diminished when GSH levels were decreased by the GSH synthesis inhibitor l -buthionine sulfoximine. Our study shows that stimulation of glial cells by bFGF allows the up-regulation of antioxidant defenses and supports cell survival during oxidative stress.  相似文献   

20.
Parvovirus H1 (H1PV) is an autonomous parvovirus that is transmitted in rodent populations. Its natural host is rats. H1PV infection is nonpathogenic except in rat and hamster fetuses and newborns. H1PV infection of human cancer cells caused strong oncolytic effects in preclinical models. For a clinical trial of H1PV in patients with brain tumors, clinical-grade H1PV was produced according to Good Manufacturing Practices. This report focuses on results obtained after a single high-dose intravenous injection of highly purified H1PV in 30 rats and multiple (n = 17) intravenous injections at 3 dose levels in 223 rats. In both studies, no virus-related mortality or macroscopic organ changes related to H1PV occurred. Histopathology after multiple virus injections revealed minimal diffuse bile duct hyperplasia in livers of animals of the highest dose group and germinal center development in spleens of animals from the high-dose group. Liver changes were reversible within a 2-wk recovery period after the last injection. Hematology, blood chemistry, and coagulation analyses did not reveal significant toxicologic changes due to H1PV. Virus injection stimulated the production of IgG antibodies but did not alter mononuclear cell function or induce cytokine release. PCR analysis showed dose-dependent levels of viral genomes in all organs tested. The virus was excreted primarily through feces. These data provide important information regarding H1PV infection in its natural host. Due to the confirmation of the favorable safety profile of H1PV in a permissive animal model, a phase I/IIa clinical trial of H1PV in brain tumor patients could be initiated.Abbreviations: H1PV, parvovirus H1; GMP, Good Manufacturing Practice; NS, nonstructural protein; VG, viral genomesParvovirus H1 (H1PV) is a small nonenveloped virus which contains a linear single stranded DNA genome of 5.1kb and belongs to the family Parvoviridae. The natural host is the rat, but similar to other related parvoviruses H1PV is able to infect and replicate in cells of other species. This is known for hamsters and humans but H1PV is unable to infect mice. However, no systematic screening of species for susceptibility to H1PV infection has been performed.27 Because H1PV is transmitted in rodent populations, laboratory animals are routinely tested for the presence of antiH1PV antibodies to exclude detrimental effects on research results3,20 Typically only animals without previous parvovirus infection are used in experimental research. In the natural host, rats, as well in hamsters, which can be infected experimentally, H1PV is pathogenic only for newborns and is embryo- and fetotoxic. The effects on progeny depend on the age at infection. Although animals inoculated with H1PV during the ovular preimplantation period do not reveal any harm, infection during midgestation typically results in fetal death. When infected during late gestation or within the first few days after delivery, progeny frequently develop so-called ‘osteolytic syndrome,’ characterized by dwarfism and some mongoloid-like features.10,11,18,19,26There is no detailed knowledge whether high doses of H1PV or repeated inoculations with the virus lead to pathologic effects that are not observed after normal transmission. H1PV infection in combination with additional factors can lead to aberrant effects, such as hepatocellular necrosis, in infected rats subjected to hepatotoxic chemicals and increased virus proliferation in liver tissue of animals infected with parasites.20 Furthermore, natural infection with a similar virus, Kilham rat parvovirus (KRV), can eventually lead to clinical illness.3As well as being a naturally occurring virus in the rodent population, H1PV has oncosuppressive properties, which were demonstrated when it inhibited the formation of spontaneous as well as chemically or virally induced tumors in laboratory animals.28,29 More recent investigations demonstrated the direct oncolytic potential of the virus in a number of cancers.7 H1PV infection of tumor cell cultures, including human tumor cells and experimental tumors in animals, led to efficient cell killing and tumor regression.1,2,8,13,14,23,24 The parvoviral cytotoxicity is attributed, at least in part, to the viral regulatory nonstructural protein NS1, and the smaller nonstructural protein NS2 may modulate NS1 cytotoxicity. Tumor entities in which H1PV showed strong oncolytic effects are malignant brain tumors (glioblastomas), lymphoma, pancreatic ductal adenocarcinoma, and others. The encouraging rates of complete remissions after intratumoral or intravenous H1PV injection of rats bearing large intracranial gliomas led to a clinical trial (ParvOryx01) in patients with recurrent glioblastoma multiforme.12,13For clinical use, H1PV had to be produced according to Good Manufacturing Practice (GMP) standards. To comply with GMP requirements, the purity, infectivity and stability of the virus preparation had to be demonstrated by the manufacturer (IDT Biologica, Dessau, Germany). Prior to use in patients, this medical-grade GMP-produced batch of virus had to undergo extensive toxicology testing in animals. Due to the permissiveness for H1PV infection and replication, rats were defined as the appropriate and sufficient species to investigate the potential toxicity profile of H1PV. This species selection was approved by the regulatory authority (Paul-Ehrlich Institut, Langen, Germany). A minimal regulatory requirement in repeated toxicology testing for clinical trials in humans is a 2-wk treatment period. The duration of the H1PV toxicology study presented here reflects the intended protocol of the clinical trial in brain tumor patients. However, to allow for possible other trials in different tumor entities, the treatment protocol here exceeds the minimal period of 2 wk. An additional reason for the extension of the study beyond the minimal duration was that an immunologic response to the injected virus was not expected to begin before 2 wk after the initial injection. In consequence, additional virus administrations in weeks 3 and 4 were required to investigate potential adverse effects related to the activation of the immune system. These considerations and requirements led to a study protocol that scheduled a total of 17 injections within 28 d (14 injections during the first 14 d, 2 injections in week 3, and one injection in week 4). In light of the absence of pathologic side effects after H1PV injection in preclinical experiments, the investigated doses in this toxicology study were substantially higher than those intended for the initial treatments in tumor patients (1 × 106 pfu).This report focuses on the biology of H1PV infection after intravenous injection of rats with a single high virus dose at 2 dose levels (8.6 × 107 and 8.6 × 108 pfu per rat) or after a total of 17 administrations at 3 different dose levels (106, 107, 108 pfu per injection). The results of this study were mandatory for the regulatory approval of a clinical trial (ParvOryx01), which started in October 2011. In addition to providing safety information, the data offer insights into the biology of H1PV in the natural host including organ distribution, relative organ concentration, crossing of the blood-brain barrier, virus shedding, and immunologic reactions. Because the data were generated with purified virus under highly regulated test conditions, the results add valuable information to the understanding of H1PV infection in the natural host. In addition, the availability of these results likely will help to reduce the number of future animal experiments in this or related areas of research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号