首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
Loss of cell adhesion and enhancement of cell motility contribute to epithelial-to-mesenchymal transition during development. These processes are related to a) rearrangement of cell-cell and cell-substrate adhesion molecules; b) cross talk between extra-cellular matrix and internal cytoskeleton through focal adhesion molecules. Focal adhesions are stringently regulated transient structures implicated in cell adhesion, spreading and motility during tissue development. Importantly, despite the extensive elucidation of the molecular composition of focal adhesions, the complex regulation of their dynamics is largely unclear. Here, we demonstrate, using live-imaging in medaka, that the microRNA miR-204 promotes both mesenchymal neural crest and lens cell migration and elongation. Overexpression of miR-204 results in upregulated cell motility, while morpholino-mediated ablation of miR-204 activity causes abnormal lens morphogenesis and neural crest cell mislocalization. Using a variety of in vivo and in vitro approaches, we demonstrate that these actions are mediated by the direct targeting of the Ankrd13A gene, which in turn controls focal cell adhesion formation and distribution. Significantly, in vivo restoration of abnormally elevated levels of Ankrd13A resulting from miR-204 inactivation rescued the aberrant lens phenotype in medaka fish. These data uncover, for the first time in vivo, the role of a microRNA in developmental control of mesenchymal cell migration and highlight miR-204 as a “master regulator” of the molecular networks that regulate lens morphogenesis in vertebrates.  相似文献   

4.
5.
6.
7.
8.
Pax genes play a pivotal role in development of the vertebrate visual system. Pax6 is the master control gene for eye development: ectopic expression of Pax6 in Xenopus laevis and Drosphila melanogaster leads to the formation of differentiated eyes on the legs or wings. Pax6 is involved in formation of ganglion cells of the retina, as well as cells of the lens, iris and cornea. In addition Pax6 may play a role in axon guidance in the visual system. Pax2 regulates differentiation of the optic disk through which retinal ganglion cell axons exit the eye. Furthermore, Pax2 plays a critical role in development of the optic chiasm and in the guidance of axons along the contralateral or ipsilateral tracts of the optic nerve to visual targets in the brain. During development Pax7 is expressed in neuronal cells of one of the major visual targets in the brain, the optic tectum/superior colliculus. Neurons expressing Pax7 migrate towards the pia and concentrate in the stratum griseum superficiale (SGFS), the target site for retinal axons. Together, expression of Pax2, 6 and 7 may guide axons during formation of functional retinotectal/collicular projections. Highly regulated Pax gene expression is also observed in mature animals. Moreover, evidence suggests that Pax genes are important for regeneration of the visual system. We are currently investigating Pax gene expression in species that display a range of outcomes of optic nerve regeneration. We predict that such information will provide valuable insights for the induction of successful regeneration of the optic nerve and of other regions of the central nervous system in mammals including man.  相似文献   

9.
Due to the large number of putative microRNA gene targets predicted by sequence-alignment databases and the relative low accuracy of such predictions which are conducted independently of biological context by design, systematic experimental identification and validation of every functional microRNA target is currently challenging. Consequently, biological studies have yet to identify, on a genome scale, key regulatory networks perturbed by altered microRNA functions in the context of cancer. In this report, we demonstrate for the first time how phenotypic knowledge of inheritable cancer traits and of risk factor loci can be utilized jointly with gene expression analysis to efficiently prioritize deregulated microRNAs for biological characterization. Using this approach we characterize miR-204 as a tumor suppressor microRNA and uncover previously unknown connections between microRNA regulation, network topology, and expression dynamics. Specifically, we validate 18 gene targets of miR-204 that show elevated mRNA expression and are enriched in biological processes associated with tumor progression in squamous cell carcinoma of the head and neck (HNSCC). We further demonstrate the enrichment of bottleneckness, a key molecular network topology, among miR-204 gene targets. Restoration of miR-204 function in HNSCC cell lines inhibits the expression of its functionally related gene targets, leads to the reduced adhesion, migration and invasion in vitro and attenuates experimental lung metastasis in vivo. As importantly, our investigation also provides experimental evidence linking the function of microRNAs that are located in the cancer-associated genomic regions (CAGRs) to the observed predisposition to human cancers. Specifically, we show miR-204 may serve as a tumor suppressor gene at the 9q21.1–22.3 CAGR locus, a well established risk factor locus in head and neck cancers for which tumor suppressor genes have not been identified. This new strategy that integrates expression profiling, genetics and novel computational biology approaches provides for improved efficiency in characterization and modeling of microRNA functions in cancer as compared to the state of art and is applicable to the investigation of microRNA functions in other biological processes and diseases.  相似文献   

10.
11.
12.
13.
MiR-10 represses HoxB1a and HoxB3a in zebrafish   总被引:2,自引:0,他引:2  
  相似文献   

14.
15.
16.
The importance of microRNAs in development is now widely accepted. However, identifying the specific targets of individual microRNAs and understanding their biological significance remains a major challenge. We have used the zebrafish model system to evaluate the expression and function of microRNAs potentially involved in muscle development and study their interaction with predicted target genes. We altered expression of the miR-30 microRNA family and generated phenotypes that mimicked misregulation of the Hedgehog pathway. Inhibition of the miR-30 family increases activity of the pathway, resulting in elevated ptc1 expression and increased numbers of superficial slow-muscle fibres. We show that the transmembrane receptor smoothened is a target of this microRNA family. Our results indicate that fine coordination of smoothened activity by the miR-30 family allows the correct specification and differentiation of distinct muscle cell types during zebrafish embryonic development.  相似文献   

17.
The Drosophila eyeless gene plays a central role in fly eye development and controls a subordinate regulatory network consisting of the so, eya and dac genes. All three genes have highly conserved mammalian homologs, suggesting possible conservation of this eye forming regulatory network. sine oculis (so) belongs to the so/Six gene family, and Six3 is prominently expressed in the developing mammalian eye. Eya1 and Dach1 are mammalian homologs of eya and dac, respectively, and although neither Eya1 nor Dach1 knockout mice express prenatal eye defects, possibilities exist for postnatal ocular phenotypes or for functional redundancy between related family members. To examine whether expression relationships analogous to those between ey, so, eya and dac exist in early mammalian oculogenesis, we investigated Pax6, Six3, Eya1 and Dach1 protein expression in murine lens and nasal placode development. Six3 expression in the pre-placode lens ectoderm is initially Pax6-independent, but subsequently both its expression and nuclear localization become Pax6-dependent. Six3, Dach1 and Eya1 nasal expression in pre-placode ectoderm are also initially Pax6-independent, but thereafter become Pax6-dependent. Pax6, Six3, Dach1 and Eya1 are all co-expressed in the developing ciliary marginal zone, a source of retinal stem cells in some vertebrates. An in vitro protein-protein interaction is detected between Six3 and Eya1. Collectively, these findings suggest that the Pax-Eya-Six-Dach network is at best only partly conserved during lens and nasal placode development. However, the findings do not rule out the possibility that such a regulatory network acts at later stages of oculogenesis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号