首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eighty soybeans (Glyane max Merr) cultivars, includingx a resistant line Oxley 615 were each inoculated with seven streams of soybean mosaic virus SMV. Susceptible cultivers produced smaller plants with delaved maturity, and reduced seed yield relative to the non inoculared plants Someptible cultivars had.a higher level of morrled seeds and seat transmission ot SMV from the morrled seeds than the resistance line Oxley 615. The SMV strain cultivar interaction was significant for all traits, suggsesting that soybean cultivars should be tested against specific SMV strains to determine their response to this virus.  相似文献   

2.
Yuan  Rong  Zeng  Xinhua  Zhao  Shengbo  Wu  Gang  Yan  Xiaohong 《Plant Molecular Biology Reporter》2019,37(4):347-364
Plant Molecular Biology Reporter - Plant stems are involved in supporting the entire plant body, thus having an important effect on the yield of oilseed rape. The current understanding of the...  相似文献   

3.

Background

With the migration of human beings, advances of agricultural sciences, evolution of planting patterns and global warming, soybeans have expanded to both tropical and high-latitude cold regions (HCRs). Unlike other regions, HCRs have much more significant and diverse photoperiods and temperature conditions over seasons or across latitudes, and HCR soybeans released there show rich diversity in maturity traits. However, HCR soybeans have not been as well classified into maturity groups (MGs) as other places. Therefore, it is necessary to identify MGs in HCRs and to genotype the maturity loci.

Methods

Local varieties were collected from the northern part of Northeast China and the far-eastern region of Russia. Maturity group reference (MGR) soybeans of MGs MG000, MG00, and MG0 were used as references during field experiments. Both local varieties and MGR soybeans were planted for two years (2010-2011) in Heihe (N 50°15′, E 127°27′, H 168.5 m), China. The days to VE (emergence), R1 (beginning bloom) and R7 (beginning maturity) were recorded and statistically analyzed. Furthermore, some varieties were further genotyped at four molecularly-identified maturity loci E1, E2, E3 and E4.

Results

The HCR varieties were classified into MG0 or even more early-maturing. In Heihe, some varieties matured much earlier than MG000, which is the most early-maturing known MG, and clustered into a separate group. We designated the group as MG0000, following the convention of MGs. HCR soybeans had relatively stable days to beginning bloom from emergence. The HCR varieties diversified into genotypes of E1, E2, E3 and E4. These loci had different effects on maturity.

Conclusion

HCRs diversify early-maturing MGs of soybean. MG0000, a new MG that matures much earlier than known MGs, was developed. HCR soybean breeding should focus more on shortening post-flowering reproductive growth. E1, E2, E3, and E4 function differentially.  相似文献   

4.
5.
Soybean peroxidase (SBP), (EC 1.11.1.7) can be readily extracted from soybean seed hulls. This study reports on the direct use of soybean seed‐hull extracts for the bioremediation of phenolic wastes. The crude SBP extract from the hulls, like pure soybean peroxidase, is catalytically active in a broad range of pH and temperatures. As SBP is gradually released into the aqueous solution from seed hulls, the direct use of soybean seed hulls can reduce SBP inactivation by H2O2 and enhance the utilization efficiency of SBP through the slow release of the enzyme from the seed hulls. However, large doses of soybean seed hulls were found to be ineffective in phenol removal. Gradual additions of H2O2 in combination with the SBP released from the hulls were applied to optimize the bioremediation. Since the crude extract contains a mixture of multiple soybean proteins, soybean seed hull slurry required a higher concentration of H2O2 to remove the phenolic substrates than did the purified enzyme. Under the experimental conditions, 80 % of phenol (10.6 mM), 96 % of 2‐chlorophenol (3.9 mM), 95 % of 2,4‐dichlorophenol (3.1 mM), and 94 % of mixed phenol and chlorophenols were removed using soybean seed hulls in a single batch reactor. These results demonstrate that soybean seed hulls, compared to purified SBP, may be a more cost‐effective alternative in the enzymatic removal of phenolic compounds through polymerization reactions.  相似文献   

6.
Staswick PE 《Plant physiology》1989,90(4):1252-1255
A temporary vegetative storage protein, composed of similar 25 kilodalton and 27 kilodalton subunits, was found to be abundant in soybean (Glycine max (L.) Herr. var Hobbit) leaves, stems, pods, flower petals, germinated cotyledons, and less abundant in roots, nodules and seeds. Total pod protein was highest at 3 weeks after flowering and declined by 37% within 3 weeks during seed development. During this time the vegetative storage protein declined from 18% to 1.5% of the total pod protein and accounted for 45% of the protein lost from pods. This indicates that the vegetative storage protein makes a significant contribution to the pool of nutrients mobilized from pods for transport to developing seeds.  相似文献   

7.
8.
9.
微量大豆种子基因组DNA的快速制备   总被引:13,自引:1,他引:12  
用改良的CTAB法,从微量大豆种子样品中快速提取了基因组DNA,并从大豆基因组中扩增到了大豆蛋白酶抑制剂基因.  相似文献   

10.
11.
Russian Journal of Plant Physiology - Phytohormones play a key important role in the sink development of the seed. Endogenous content of IAA, PAA, GA, ABA, and kinetin were estimated in two...  相似文献   

12.
Roots of young soybean (Glycine max [L.] Merr.) plants (up to 25 days old) contain two distinct urease isozymes, which are separable by hydroxyapatite chromatography. These two urease species (URE1 and URE2) differ in: (a) electrophoretic mobility in native gels, (b) pH dependence, and (c) recognition by a monoclonal antibody specific for the seed (“embryo-specific”) urease. By these parameters root URE1 urease is similar to the abundant embryo-specific urease isozyme, while root URE2 resembles the “ubiquitous” urease which has previously been found in all soybean tissues examined (leaf, embryo, seed coat, and cultured cells). The embryo-specific and ubiquitous urease isozymes are products of the Eu1 and Eu4 structural genes, respectively. Roots of the eu1-sun/eu1-sun genotype, which lacks the embryo-specific urease (i.e. `seed urease-null'), contain no URE1 urease activity. Roots of eu4/eu4, which lacks ubiquitous urease, lack the URE2 (leaflike) urease activity. From these genetic and biochemical criteria, then, we conclude that URE1 and URE2 are the embryo-specific and ubiquitous ureases, respectively. Adventitious roots generated from cuttings of any urease genotype lack URE1 activity. In seedling roots the seedlike (URE1) activity declines during development. Roots of 3-week-old plants contain 5% of the total URE1 activity of the radicle of 4-day-old seedlings, which, in turn, has approximately the same urease activity level as the dormant embryonic axis. The embryo-specific urease incorporates label from [35S]methionine during embryo development but not during germination, indicating that there is no de novo synthesis of the embryo-specific (URE1) urease in the germinating root. We conclude that the seedlike urease (URE1) found in roots of young soybean plants is a remnant of the Eu1-encoded, abundant, embryo-specific urease which accumulates in the embryonic root axis during seed development.  相似文献   

13.
14.
15.
Although the development of the soybean ovule has been fairlywell studied, knowledge of the sequence of events in the seedcoat during the first 3 weeks after flowering is incomplete.The goal of the present study was to document, using light microscopy,the early development of the soybean seed coat with respectto changes in structure and histochemistry. At anthesis, theseed coat consists of an outer layer of cuboidal epidermal cellssurrounding several layers of undifferentiated parenchyma (whichtogether constitute the outer integument), and an inner layerof cuboidal endothelial cells (the inner integument). At 3 dpost anthesis (dpa), the inner integument has expanded to includethree to five layers of relatively large cells with thick, heavily-stainingcell walls immediately adjacent to the endothelium. By 18 dpa,the outer integument has developed into a complex of tissuescomprised of an inner layer of thick-walled parenchyma, an outerlayer of thin-walled parenchyma containing vascular tissue whichhas grown down from the lateral vascular bundles in the hilumregion, a hypodermis of hourglass cells, and palisade layer(epidermis). The thick-walled parenchyma of the inner integumenthas become completely stretched and compressed, leaving a single,deeply staining wall layer directly above the endothelium. At21 dpa, the outermost cells of the endosperm have begun to compressthe endothelium. At 45 dpa (physiological maturity) the seedcoat retains only the palisade layer, hourglass cells, and afew layers of thin-walled parenchyma. The innermost layer ofthe endosperm, the aleurone layer, adheres to the inside ofthe seed coat. This knowledge will be invaluable in future studiesof manipulation of gene expression in the seed coat to modifyseed or seed coat characteristics. Copyright 1999 Annals ofBotany Company Soybean, Glycine max, seed coat, development, aleurone.  相似文献   

16.
Todd JJ  Vodkin LO 《Plant physiology》1993,102(2):663-670
The dominant I gene inhibits accumulation of anthocyanin pigments in the epidermal layer of soybean (Glycine max) seed coats. Seed-coat color is also influenced by the R locus and by the pubescence color alleles (T, tawny; t, gray). Protein and RNA from cultivars with black (i,R,T) and brown (i,r,T) seed coats are difficult to extract. To determine the nature of the interfering plant products, we examined seed-coat extracts from Clark isogenic lines for flavonoids, anthocyanins, and possible proanthocyanidins by thin-layer chromatography. We show that yellow seed-coat varieties (I) do not accumulate anthocyanins (anthocyanidin glycosides) or proanthocyanidins (polymeric anthocyanidins). Mature, black (i,R,T) and imperfect-black (i,R,t) seed coats contained anthocyanins, whereas mature, brown (i,r,T) and buff (i,r,t) seed coats did not contain anthocyanins. In contrast, all colored (i) genotypes tested positive for the presence of proanthocyanidins by butanol/ HCl and 0.5% vanillin assays. Immature, black (i,R,T) and brown (i,r,T) seed coats contained significant amounts of procyanidin, a 3[prime],4[prime]-hydroxylated proanthocyanidin. Immature, black (i,R,T) or brown (i,r,T) seed-coat extracts also tested positive for the ability to precipitate proteins in a radial diffusion assay and to bind RNA in vitro. Imperfect-black (i,R,t) or buff (i,r,t) seed coats contained lesser amounts of propelargonidin, a 4[prime]-hydroxylated proanthocyanidin. Seed-coat extracts from these genotypes did not have the ability to precipitate protein or bind to RNA. In summary, the dominant I gene controls inhibition of not only anthocyanins but also proanthocyanidins in soybean seed coats. In homozygous recessive i genotypes, the T-t gene pair determines the types of proanthocyanidins present, which is consistent with the hypothesis that the T locus encodes a microsomal 3[prime]-flavonoid hydroxylase.  相似文献   

17.
Water deficits during seed filling decrease seed size in soybean (Glycine max L.). This may result from a reduction in the supply of assimilates from the maternal plant and/or an inhibition of seed metabolism. To determine whether maternal or zygotic factors limited seed growth, we examined the effects of a plant water deficit on the supply of sucrose to and its utilization by developing embryos. Plants were grown in the greenhouse, and water deficits were imposed by withholding water for a period of 6 days during linear seed fill. When water was withheld, leaf water potential decreased rapidly, inhibiting canopy photosynthesis completely within 3 days. However, seed dry weight (nodes 7-11) continued to increase at or near the control rate. The level of total extractable carbohydrates in leaf, stem, and pericarp tissue decreased by 70, 50, and 45%, respectively, indicating that reserves were mobilized to support seed growth. Cotyledon sucrose content decreased from about 60 milligrams per gram dry weight to 30 milligrams per gram dry weight. Similarly, the concentration of sucrose in the interfacial apoplast of the cotyledons decreased from approximately 100 millimolar to 50 millimolar. However, the rate of sucrose accumulation by excised embryos, measured in a short-term in vitro assay, increased in response to the water deficit. These results indicate that both source and sink activity in soybean are altered by water deficits to maintain the flux of assimilates to the developing embryos. This may explain why seed growth is maintained, albeit for a shorter duration, when soybean is exposed to water deficits during the seed filling period.  相似文献   

18.
Soybean (Glycine max [L.] Merrill) leaf senescence, which may partially result from mineral redistribution, appears to limit grain yield. Two experiments were designed to test the effects of supplemental inorganic phosphate (Pi), K, malate, and methionine (Met) infusions on senescence and yield. A novel stem infusion technique using pediatric intravenous kits was developed to supply these nutrients throughout seed growth. An average of 48.4 milliliters per plant was successfully infused into lower stem internodes during a 4 to 6 week period. Senescence was unaffected by K or malate infusions, but was delayed by Pi infusions (up to 8 days) and by increased nutrient solution Pi levels (up to 21 days) in separate experiments. Treatments which delayed senescence also improved yield as much as 3-fold, due primarily to increased pod retention and secondarily to increased seed size. Met infusions further increased pod retention at the lower, infused nodes, and thus increased total plant yield also. The influence of higher Pi levels during reproductive growth on soybean pod retention and yield may have been the result of sustained sucrose export due to altered C partitioning in leaves. The role of Met in improving yield was not clear. However, these results clearly demonstrate the importance of adequate Pi for delaying senescence and improving pod retention and yield.  相似文献   

19.
Response of Soybean Seed Germination to Cadmium and Acid Rain   总被引:2,自引:0,他引:2  
Cadmium (Cd) pollution and acid rain are the main environmental issues, and they often occur in the same agricultural region. Nevertheless, up to now, little information on the combined pollution of Cd(2+) and acid rain action on crops were presented. Here, we investigated the combined effect of Cd(2+) and acid rain on the seed germination of soybean. The results indicated that the single treatment with the low level of Cd(2+) (0.18, 1.0, 3.0?mg?L(-1)) or acid rain (pH ≥3.0) could not affect the seed germination of soybean, which was resulted in the increased activities of peroxidase and catalase. The single treatment with the high concentration of Cd(2+) (>6?mg?L(-1)) or acid rain at pH?2.5 decreased the activities of peroxidase and catalase, damaged the cell membrane and then decreased the seed germination of soybean. Meanwhile, the same toxic effect was observed in the combined treatment with Cd(2+) and acid rain, and the combined treatment had more toxic effect than the single treatment with Cd(2+) or acid rain. Thus, the combined pollution of Cd(2+) and acid rain had more potential threat to the seed germination of soybean than the single pollution of Cd(2+) or acid rain.  相似文献   

20.
Priestley, D. A., Werner, B. G. and Leopold, A. C. 1985. Thesusceptibility of soybean seed lipids to artificially-enhancedatmospheric oxidation.—J. exp. Bot. 36: 1653–1659. As a model system for studying possible oxidation changes insoybeans with ageing, whole soybean seeds, ground soybeans orsoybean oil were exposed to a heated oxygen atmosphere (105°C)for periods of up to 6 d. With the exception of polar lipidsof the embryonic axis, seed lipids were highly resistant tooxidative degradation provided seed structure was maintainedintact; however, the non-lipid fraction of the seed rapidlybecame discoloured. Polar lipids of ground seed material, andboth total and polar lipids in isolated oil, were less stableto oxidation than similar lipids within whole seeds. These resultsindicate that seed organization protects the lipid componentsfrom atmospheric autoxidation. Key words: Soybean, seed lipids, oxidation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号