共查询到20条相似文献,搜索用时 15 毫秒
1.
Cameron R. Cunningham Ameya Champhekar Michael V. Tullius Barbara Jane Dillon Anjie Zhen Justin Rafael de la Fuente Jonathan Herskovitz Heidi Elsaesser Laura M. Snell Elizabeth B. Wilson Juan Carlos de la Torre Scott G. Kitchen Marcus A. Horwitz Steven J. Bensinger Stephen T. Smale David G. Brooks 《PLoS pathogens》2016,12(1)
Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections. 相似文献
2.
Elodie Belnoue Paola Fontannaz Anne-Fran?oise Rochat Chantal Tougne Andreas Bergthaler Paul-Henri Lambert Daniel D. Pinschewer Claire-Anne Siegrist 《PloS one》2013,8(12)
Infant mortality from viral infection remains a major global health concern: viruses causing acute infections in immunologically mature hosts often follow a more severe course in early life, with prolonged or persistent viral replication. Similarly, the WE strain of lymphocytic choriomeningitis virus (LCMV-WE) causes acute self-limiting infection in adult mice but follows a protracted course in infant animals, in which LCMV-specific CD8+ T cells fail to expand and control infection. By disrupting type I IFNs signaling in adult mice or providing IFN-α supplementation to infant mice, we show here that the impaired early life T cell responses and viral control result from limited early type I IFN responses. We postulated that plasmacytoid dendritic cells (pDC), which have been identified as one major source of immediate-early IFN-I, may not exert adult-like function in vivo in the early life microenvironment. We tested this hypothesis by studying pDC functions in vivo during LCMV infection and identified a coordinated downregulation of infant pDC maturation, activation and function: despite an adult-like in vitro activation capacity of infant pDCs, the expression of the E2-2 pDC master regulator (and of critical downstream antiviral genes such as MyD88, TLR7/TLR9, NF-κB, IRF7 and IRF8) is downregulated in vivo at baseline and during LCMV infection. A similar pattern was observed in response to ssRNA polyU, a model ligand of the TLR7 viral sensor. This suggests that the limited T cell-mediated defense against early life viral infections is largely attributable to / regulated by infant pDC responses and provides incentives for novel strategies to supplement or stimulate immediate-early IFN-α responses. 相似文献
3.
4.
5.
Elizabeth J. Faul Celestine N. Wanjalla Mehul S. Suthar Michael Gale Jr Christoph Wirblich Matthias J. Schnell 《PLoS pathogens》2010,6(7)
As with many viruses, rabies virus (RABV) infection induces type I interferon (IFN) production within the infected host cells. However, RABV has evolved mechanisms by which to inhibit IFN production in order to sustain infection. Here we show that RABV infection of dendritic cells (DC) induces potent type I IFN production and DC activation. Although DCs are infected by RABV, the viral replication is highly suppressed in DCs, rendering the infection non-productive. We exploited this finding in bone marrow derived DCs (BMDC) in order to differentiate which pattern recognition receptor(s) (PRR) is responsible for inducing type I IFN following infection with RABV. Our results indicate that BMDC activation and type I IFN production following a RABV infection is independent of TLR signaling. However, IPS-1 is essential for both BMDC activation and IFN production. Interestingly, we see that the BMDC activation is primarily due to signaling through the IFNAR and only marginally induced by the initial infection. To further identify the receptor recognizing RABV infection, we next analyzed BMDC from Mda-5−/− and RIG-I−/− mice. In the absence of either receptor, there is a significant decrease in BMDC activation at 12h post infection. However, only RIG-I−/− cells exhibit a delay in type I IFN production. In order to determine the role that IPS-1 plays in vivo, we infected mice with pathogenic RABV. We see that IPS-1−/− mice are more susceptible to infection than IPS-1+/+ mice and have a significantly increased incident of limb paralysis. 相似文献
6.
Jean Guan S. M. Shahjahan Miah Zachary S. Wilson Timothy K. Erick Cindy Banh Laurent Brossay 《PloS one》2014,9(10)
Type I interferons (IFN) are unique cytokines transcribed from intronless genes. They have been extensively studied because of their anti-viral functions. The anti-viral effects of type I IFN are mediated in part by natural killer (NK) cells. However, the exact contribution of type I IFN on NK cell development, maturation and activation has been somewhat difficult to assess. In this study, we used a variety of approaches to define the consequences of the lack of type I interferon receptor (IFNAR) signaling on NK cells. Using IFNAR deficient mice, we found that type I IFN affect NK cell development at the pre-pro NK stage. We also found that systemic absence of IFNAR signaling impacts NK cell maturation with a significant increase in the CD27+CD11b+ double positive (DP) compartment in all organs. However, there is tissue specificity, and only in liver and bone marrow is the maturation defect strictly dependent on cell intrinsic IFNAR signaling. Finally, using adoptive transfer and mixed bone marrow approaches, we also show that cell intrinsic IFNAR signaling is not required for NK cell IFN-γ production in the context of MCMV infection. Taken together, our studies provide novel insights on how type I IFN receptor signaling regulates NK cell development and functions. 相似文献
7.
Despite the crucial role of innate immunity in preventing or controlling pathogen-induced damage in most, if not all, cell types, very little is known about the activity of this essential defense system in central nervous system neurons, especially in humans. In this report we use both an established neuronal cell line model and an embryonic stem cell-based system to examine human neuronal innate immunity and responses to neurotropic alphavirus infection in cultured cells. We demonstrate that neuronal differentiation is associated with increased expression of crucial type I interferon signaling pathway components, including interferon regulatory factor-9 and an interferon receptor heterodimer subunit, which results in enhanced interferon stimulation and subsequent heightened antiviral activity and cytoprotective responses against neurotropic alphaviruses such as western equine encephalitis virus. These results identify important differentiation-dependent changes in innate immune system function that control cell-autonomous neuronal responses. Furthermore, this work demonstrates the utility of human embryonic stem cell-derived cultures as a platform to study the interactions between innate immunity, virus infection, and pathogenesis in central nervous system neurons. 相似文献
8.
Type I interferons (IFNs), key antiviral cytokines, evolve to adapt with ever-changing viral threats during vertebrate speciation. Due to novel pathogenic pressure associated with Suidae speciation and domestication, porcine IFNs evolutionarily engender both molecular and functional diversification, which have not been well addressed in pigs, an important livestock species and animal model for biomedical sciences. Annotation of current swine genome assembly Sscrofa10.2 reveals 57 functional genes and 16 pseudogenes of type I IFNs. Subfamilies of multiple IFNA, IFNW and porcine-specific IFND genes are separated into four clusters with ∼60 kb intervals within the IFNB/IFNE bordered region in SSC1, and each cluster contains mingled subtypes of IFNA, IFNW and IFND. Further curation of the 57 functional IFN genes indicates that they include 18 potential artifactual duplicates. We performed phylogenetic construction as well as analyses of gene duplication/conversion and natural selection and showed that porcine type I IFN genes have been undergoing active diversification through both gene duplication and conversion. Extensive analyses of the non-coding sequences proximal to all IFN coding regions identified several genomic repetitive elements significantly associated with different IFN subtypes. Family-wide studies further revealed their molecular diversity with respect to differential expression and restrictive activity on the resurgence of a porcine endogenous retrovirus. Based on predicted 3-D structures of representative animal IFNs and inferred activity, we categorized the general functional propensity underlying the structure-activity relationship. Evidence indicates gene expansion of porcine type I IFNs. Genomic repetitive elements that associated with IFN subtypes may serve as molecular signatures of respective IFN subtypes and genomic mechanisms to mediate IFN gene evolution and expression. In summary, the porcine type I IFN profile has been phylogenetically defined family-wide and linked to diverse expression and antiviral activity, which is important information for further biological studies across the porcine type I IFN family. 相似文献
9.
10.
11.
12.
13.
14.
15.
16.
Grégory Caignard Anastassia V. Komarova Mehdi Boura? Thomas Mourez Yves Jacob Louis M. Jones Flore Rozenberg Astrid Vabret Fran?ois Freymuth Frédéric Tangy Pierre-Olivier Vidalain 《PLoS pathogens》2009,5(9)
A number of paramyxoviruses are responsible for acute respiratory infections in children, elderly and immuno-compromised individuals, resulting in airway inflammation and exacerbation of chronic diseases like asthma. To understand the molecular pathogenesis of these infections, we searched for cellular targets of the virulence protein C of human parainfluenza virus type 3 (hPIV3-C). We found that hPIV3-C interacts directly through its C-terminal domain with STAT1 and GRB2, whereas C proteins from measles or Nipah viruses failed to do so. Binding to STAT1 explains the previously reported capacity of hPIV3-C to block type I interferon signaling, but the interaction with GRB2 was unexpected. This adaptor protein bridges Epidermal Growth Factor (EGF) receptor to MAPK/ERK pathway, a signaling cascade recently found to be involved in airway inflammatory response. We report that either hPIV3 infection or transient expression of hPIV3-C both increase cellular response to EGF, as assessed by Elk1 transactivation and phosphorylation levels of ERK1/2, 40S ribosomal subunit protein S6 and translation initiation factor 4E (eIF4E). Furthermore, inhibition of MAPK/ERK pathway with U0126 prevented viral protein expression in infected cells. Altogether, our data provide molecular basis to explain the role of hPIV3-C as a virulence factor and determinant of pathogenesis and demonstrate that Paramyxoviridae have evolved a single virulence factor to block type I interferon signaling and to boost simultaneous cellular response to growth factors. 相似文献
17.
Teresa Rodríguez-Calvo José-Manuel Rojas Verónica Martín Noemí Sevilla 《Journal of virology》2014,88(2):859-867
Hematopoietic stem cells (HSCs) give rise to progenitors with potential to produce multiple cell types, including dendritic cells (DCs). DCs are the principal antigen-presenting cells and represent the crucial link between innate and adaptive immune responses. Bluetongue virus (BTV), an economically important Orbivirus of the Reoviridae family, causes a hemorrhagic disease mainly in sheep and occasionally in other species of ruminants. BTV is transmitted between its mammalian hosts by certain species of biting midges (Culicoides spp.) and is a potent alpha interferon (IFN-α) inducer. In the present report, we show that BTV infects cells of hematopoietic origin but not HSCs in immunocompetent sheep. However, BTV infects HSCs in the absence of type I IFN (IFN-I) signaling in vitro and in vivo. Infection of HSCs in vitro results in cellular death by apoptosis. Furthermore, BTV infects bone marrow-derived DCs (BM-DCs), interfering with their development to mature DCs in the absence of type I IFN signaling. Costimulatory molecules CD80 and CD86 and costimulatory molecules CD40 and major histocompatibility complex class II (MHC-II) are affected by BTV infection, suggesting that BTV interferes with DC antigen-presenting capacity. In vivo, different DC populations are also affected during the course of infection, probably as a result of a direct effect of BTV replication in DCs and the production of infectious virus. These new findings suggest that BTV infection of HSCs and DCs can impair the immune response, leading to persistence or animal death, and that this relies on IFN-I. 相似文献
18.
W Cao AK Taylor RE Biber WG Davis JH Kim AJ Reber T Chirkova JA De La Cruz A Pandey P Ranjan JM Katz S Gangappa S Sambhara 《Journal of immunology (Baltimore, Md. : 1950)》2012,189(5):2257-2265
Myeloid dendritic cells (mDCs) have long been thought to function as classical APCs for T cell responses. However, we demonstrate that influenza viruses induce rapid differentiation of human monocytes into mDCs. Unlike the classic mDCs, the virus-induced mDCs failed to upregulate DC maturation markers and were unable to induce allogeneic lymphoproliferation. Virus-induced mDCs secreted little, if any, proinflammatory cytokines; however, they secreted a substantial amount of chemoattractants for monocytes (MCP-1 and IP-10). Interestingly, the differentiated mDCs secreted type I IFN and upregulated the expression of IFN-stimulated genes (tetherin, IFITM3, and viperin), as well as cytosolic viral RNA sensors (RIG-I and MDA5). Additionally, culture supernatants from virus-induced mDCs suppressed the replication of virus in vitro. Furthermore, depletion of monocytes in a mouse model of influenza infection caused significant reduction of lung mDC numbers, as well as type I IFN production in the lung. Consequently, increased lung virus titer and higher mortality were observed. Taken together, our results demonstrate that the host responds to influenza virus infection by initiating rapid differentiation of circulating monocytes into IFN-producing mDCs, which contribute to innate antiviral immune responses. 相似文献
19.
Freddy A. Medina Giselle Torres-Malavé Amanda J. Chase Gilberto A. Santiago Juan F. Medina Luis M. Santiago Jorge L. Mu?oz-Jordán 《PLoS neglected tropical diseases》2015,9(3)
Background/ObjectivesIn vitro studies have shown that dengue virus (DENV) can thwart the actions of interferon (IFN)-α/β and prevent the development of an antiviral state in infected cells. Clinical studies looking at gene expression in patients with severe dengue show a reduced expression of interferon stimulated genes compared to patients with dengue fever. Interestingly, there are conflicting reports as to the ability of DENV or other flaviviruses to inhibit IFN-α/β signaling.ConclusionsThe ability of DENVs to inhibit IFN-α/β signaling is conserved. Although some variation in the inhibition was observed, the moderate differences may be difficult to correlate with clinical outcomes. DENVs were unable to inhibit pSTAT1 in NHP cell lines, but their ability to inhibit pSTAT1 in primary Rhesus macaque dendritic cells suggests that this may be a cell specific phenomena or due to the transformed nature of the cell lines. 相似文献