首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
A cyanobacterial circadian clockwork   总被引:1,自引:0,他引:1  
Johnson CH  Mori T  Xu Y 《Current biology : CB》2008,18(17):R816-R825
  相似文献   

7.
8.
9.
L Ma  R Ranganathan 《PloS one》2012,7(8):e42581
An oscillator consisting of KaiA, KaiB, and KaiC proteins comprises the core of cyanobacterial circadian clock. While one key reaction in this process-KaiC phosphorylation-has been extensively investigated and modeled, other key processes, such as the interactions among Kai proteins, are not understood well. Specifically, different experimental techniques have yielded inconsistent views about Kai A, B, and C interactions. Here, we first propose a mathematical model of cyanobacterial circadian clock that explains the recently observed dynamics of the four phospho-states of KaiC as well as the interactions among the three Kai proteins. Simulations of the model show that the interaction between KaiB and KaiC oscillates with the same period as the phosphorylation of KaiC, but displays a phase delay of ~8 hr relative to the total phosphorylated KaiC. Secondly, this prediction on KaiB-C interaction are evaluated using a novel FRET (Fluorescence Resonance Energy Transfer)-based assay by tagging fluorescent proteins Cerulean and Venus to KaiC and KaiB, respectively, and reconstituting fluorescent protein-labeled in vitro clock. The data show that the KaiB∶KaiC interaction indeed oscillates with ~24 hr periodicity and ~8 hr phase delay relative to KaiC phosphorylation, consistent with model prediction. Moreover, it is noteworthy that our model indicates that the interlinked positive and negative feedback loops are the underlying mechanism for oscillation, with the serine phosphorylated-state (the "S-state") of KaiC being a hub for the feedback loops. Because the kinetics of the KaiB-C interaction faithfully follows that of the S-state, the FRET measurement may provide an important real-time probe in quantitative study of the cyanobacterial circadian clock.  相似文献   

10.
11.
12.
13.
14.
15.
Cellular circadian pacemaking and the role of cytosolic rhythms   总被引:3,自引:0,他引:3  
  相似文献   

16.
17.
18.
19.
20.
Organisms coordinate biological activities into daily cycles using an internal circadian clock. The circadian oscillator proteins KaiA, KaiB, and KaiC are widely believed to underlie 24-h oscillations of gene expression in cyanobacteria. However, a group of very abundant cyanobacteria, namely, marine Prochlorococcus species, lost the third oscillator component, KaiA, during evolution. We demonstrate here that the remaining Kai proteins fulfill their known biochemical functions, although KaiC is hyperphosphorylated by default in this system. These data provide biochemical support for the observed evolutionary reduction of the clock locus in Prochlorococcus and are consistent with a model in which a mechanism that is less robust than the well-characterized KaiABC protein clock of Synechococcus is sufficient for biological timing in the very stable environment that Prochlorococcus inhabits.Cyanobacteria are photosynthetic prokaryotes that are known to possess a true circadian clock. Gene expression and other biological activities follow rhythmic cycles with a circa 24-h period. Rhythmic behavior is maintained even in the absence of environmental stimuli such as light and temperature. The underlying core oscillator consisting of the clock proteins KaiA, KaiB, and KaiC is the only characterized prokaryotic circadian oscillator. It was previously demonstrated that these three proteins, together with ATP, can produce 24-h oscillations of KaiC phosphorylation in vitro (17). The essential roles of KaiA and KaiB in oppositely influencing KaiC phosphorylation are well documented for the oscillator of “Synechococcus elongatus” PCC 7942 (hereafter S. elongatus), the species for which most bacterial circadian research has been conducted. Thus, it is puzzling that marine cyanobacteria of the genus Prochlorococcus, probably the most abundant photosynthetic organisms on Earth (5, 28), contain homologs of only two of these clock proteins, KaiC and KaiB (3, 11, 20). Laboratory cultures (10) as well as natural Prochlorococcus populations (24) display a rhythmic cell cycle together with a daily periodicity of gene expression that can be explained by the functioning of a circadian clock. Alternatively, these rhythms could be controlled directly by the daylight (10). The functional role of the Kai proteins from Prochlorococcus has remained entirely unclear and has not been experimentally addressed thus far.In the well-studied protein clock of S. elongatus, KaiC hexamers are at the center of the circadian oscillator, combining three intrinsic enzymatic activities: autokinase, autophosphatase, and ATPase. KaiA and KaiB modulate KaiC''s activities in opposite manners. KaiA seems to be essential for the shift between autophosphatase and autokinase, and for generating KaiC phosphorylation rhythms, by stabilizing C-terminal residues of KaiC, the A-loops (12). Thus, the absence of KaiA should have consequences for the enzymatic activities of the remaining Kai proteins of Prochlorococcus. In this study, the previously unknown functions of the Prochlorococcus sp. strain MED4 protein KaiB (ProKaiB) and ProKaiC are examined. In our in vitro experiments, we analyzed the recombinant proteins ProKaiB and ProKaiC in direct comparison to the core oscillator of S. elongatus, which consists of S. elongatus KaiA (SynKaiA), SynKaiB, and SynKaiC. We show here that both clock proteins from Prochlorococcus sp. strain MED4 independently exhibit their known biochemical functions, although the influence of ProKaiB on ProKaiC dephosphorylation is different certainly due to the absence of KaiA, the third protein of the oscillator. For ProKaiC, we demonstrate ATPase activity as well as the phosphorylation of serine 427 (S427) and threonine 428 (T428) using mass spectrometry and high-resolution sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). Moreover, we suggest that the deletion of kaiA is compensated by the enhanced autophosphorylation activity of ProKaiC. Our results might have further implications for the analysis of a possible timing mechanism in other bacterial species, such as purple bacteria that encode KaiB and KaiC homologs but that lack the KaiA component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号