首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin increases glucose transport by stimulating the trafficking of intracellular GLUT4 to the cell surface, a process known as GLUT4 translocation. A key protein in signaling this process is AS160, a Rab GTPase-activating protein (GAP) whose activity appears to be suppressed by Akt phosphorylation. Tbc1d1 is a Rab GAP with a sequence highly similar to that of AS160 and with the same Rab specificity as that of AS160. The role of Tbc1d1 in regulating GLUT4 trafficking has been unclear. Our previous study showed that overexpressed Tbc1d1 inhibited insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes, even though insulin caused phosphorylation on its single canonical Akt motif. In the present study, we show in 3T3-L1 adipocytes that Tbc1d1 is only 1/20 as abundant as AS160, that knockdown of Tbc1d1 has no effect on insulin-stimulated GLUT4 translocation, and that overexpressed Tbc1d1 also inhibits GLUT4 translocation elicited by activated Akt expression. These results indicate that endogenous Tbc1d1 does not participate in insulin-regulated GLUT4 translocation in adipocytes and suggest that the GAP activity of Tbc1d1 is not suppressed by Akt phosphorylation. In addition, we discovered that Tbc1d1 is much more highly expressed in skeletal muscle than fat and that the AMP-activated protein kinase (AMPK) activator 5'-aminoimidazole-4-carboxamide ribonucleoside partially reversed the inhibition of insulin-stimulated GLUT4 translocation by overexpressed Tbc1d1 in 3T3-L1 adipocytes. 5'-Aminoimidazole-4-carboxamide ribonucleoside activation of the kinase AMPK is known to cause GLUT4 translocation in muscle. The above findings strongly suggest that Tbc1d1 is a component in the signal transduction pathway leading to AMPK-stimulated GLUT4 translocation in muscle.  相似文献   

2.
Insulin stimulation of the trafficking of the glucose transporter GLUT4 to the plasma membrane is controlled in part by the phosphorylation of the Rab GAP (GTPase-activating protein) AS160 (also known as Tbc1d4). Considerable evidence indicates that the phosphorylation of this protein by Akt (protein kinase B) leads to suppression of its GAP activity and results in the elevation of the GTP form of a critical Rab. The present study examines a similar Rab GAP, Tbc1d1, about which very little is known. We found that the Rab specificity of the Tbc1d1 GAP domain is identical with that of AS160. Ectopic expression of Tbc1d1 in 3T3-L1 adipocytes blocked insulin-stimulated GLUT4 translocation to the plasma membrane, whereas a point mutant with an inactive GAP domain had no effect. Insulin treatment led to the phosphorylation of Tbc1d1 on an Akt site that is conserved between Tbc1d1 and AS160. These results show that Tbc1d1 regulates GLUT4 translocation through its GAP activity, and is a likely Akt substrate. An allele of Tbc1d1 in which Arg(125) is replaced by tryptophan has very recently been implicated in susceptibility to obesity by genetic analysis. We found that this form of Tbc1d1 also inhibited GLUT4 translocation and that this effect also required a functional GAP domain.  相似文献   

3.
Establishing a complete pathway which links occupancy of the insulin receptor to GLUT4 translocation has been particularly elusive because of the complexities involved in studying both signalling and membrane trafficking processes. However, Lienhard's group has now discovered two related molecules that could function in this linking role. These proteins, Tbc1d4 (also known as AS160) and now Tbc1d1, as reported in this issue of the Biochemical Journal, have been demonstrated to be Rab GAPs (GTPase-activating proteins) that link upstream to Akt (protein kinase B) and phosphoinositide 3-kinase and downstream to Rabs involved in trafficking of GLUT4 vesicles. The data from Leinhard and colleagues suggest that high levels of Rab GAP activity lead to suppression of GLUT4 translocation and this observation has wide significance and is likely to be relevant to the recent discovery that mutations in the Tbc1d1 gene lead to some cases of severe human obesity.  相似文献   

4.
Development of a 'static retention' property of GLUT4, the insulin-responsive glucose transporter, has emerged as being essential for achieving its maximal insulin-induced surface exposure. Herein, employing quantum-dot-based nanometrology of intracellular GLUT4 behavior, we reveal the molecular basis of its systematization endowed upon adipogenic differentiation of 3T3L1 cells. Specifically, (i) the endosomes-to-trans-Golgi network (TGN) retrieval system specialized for GLUT4 develops in response to sortilin expression, which requires an intricately balanced interplay among retromers, golgin-97 and syntaxin-6, the housekeeping vesicle trafficking machinery. (ii) The Golgin-97-localizing subdomain of the differentiated TGN apparently serves as an intermediate transit route by which GLUT4 can further proceed to the stationary GLUT4 storage compartment. (iii) AS160/Tbc1d4 then renders the 'static retention' property insulin responsive, i.e. insulin liberates GLUT4 from the static state only in the presence of functional AS160/Tbc1d4. (iv) Moreover, sortilin malfunction and the resulting GLUT4 sorting defects along with retarded TGN function might be etiologically related to insulin resistance. Together, these observations provide a conceptual framework for understanding maturation/retardation of the insulin-responsive GLUT4 trafficking system that relies on the specialized subdomain of differentiated TGN.  相似文献   

5.
6.
Following biosynthesis, both GLUT1 and VSV-G proteins appear rapidly (2-3 h) at the plasma membrane, whereas GLUT4 is retained in intracellular membrane compartments and does not display any significant insulin responsiveness until 6-9 h. Surprisingly, the acquisition of insulin responsiveness did not require plasma membrane endocytosis, as expression of a dominant-interfering dynamin mutant (Dyn/K44A) had no effect on the insulin-stimulated GLUT4 translocation. Furthermore, expression of endocytosis-defective GLUT4 mutants or continuous surface labeling with an exofacial specific antibody demonstrated that GLUT4 did not transit the cell surface prior to the acquisition of insulin responsiveness. The expression of a dominant-interfering GGA mutant (VHS-GAT) had no effect on the trafficking of newly synthesized GLUT1 or VSV-G protein to the plasma membrane, but completely blocked the insulin-stimulated translocation of newly synthesized GLUT4. Furthermore, in vitro budding of GLUT4 vesicles but not GLUT1 or the transferrin receptor was inhibited by VHS-GAT. Together, these data demonstrate that following biosynthesis, GLUT4 directly sorts and traffics to the insulin-responsive storage compartment through a specific GGA-sensitive process.  相似文献   

7.
AS160 (TBC1D4) is a known Akt substrate that is phosphorylated downstream of insulin action and that leads to regulated traffic of GLUT4. As GLUT4 vesicle fusion with the plasma membrane is a highly regulated step in GLUT4 traffic, we investigated whether AS160 and 14-3-3 interactions are involved in this process. Fusion was inhibited by a human truncated AS160 variant that encompasses the first N-terminal phosphotyrosine-binding (PTB) domain, by either of the two N-terminal PTB domains, and by a tandem construct of both PTB domains of rat AS160. We also found that in vitro GLUT4 vesicle fusion was strongly inhibited by the 14-3-3-quenching inhibitors R18 and fusicoccin. To investigate the mode of interaction of AS160 and 14-3-3, we examined insulin-dependent increases in the levels of these proteins on GLUT4 vesicles. 14-3-3γ was enriched on insulin-stimulated vesicles, and its binding to AS160 on GLUT4 vesicles was inhibited by the AS160 tandem PTB domain construct. These data suggest a model for PTB domain action on GLUT4 vesicle fusion in which these constructs inhibit insulin-stimulated 14-3-3γ interaction with AS160 rather than AS160 phosphorylation.  相似文献   

8.
Adiponectin, also known as Acrp30, is an adipose tissue-derived hormone with anti-atherogenic, anti-diabetic and insulin sensitizing properties. Two seven-transmembrane domain-containing proteins, AdipoR1 and AdipoR2, have recently been identified as adiponectin receptors, yet signalling events downstream of these receptors remain poorly defined. By using the cytoplasmic domain of AdipoR1 as bait, we screened a yeast two-hybrid cDNA library derived from human fetal brain. This screening led to the identification of a phosphotyrosine binding domain and a pleckstrin homology domain-containing adaptor protein, APPL1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding (PTB) domain and leucine zipper motif). APPL1 interacts with adiponectin receptors in mammalian cells and the interaction is stimulated by adiponectin. Overexpression of APPL1 increases, and suppression of APPL1 level reduces, adiponectin signalling and adiponectin-mediated downstream events (such as lipid oxidation, glucose uptake and the membrane translocation of glucose transport 4 (GLUT4)). Adiponectin stimulates the interaction between APPL1 and Rab5 (a small GTPase) interaction, leading to increased GLUT4 membrane translocation. APPL1 also acts as a critical regulator of the crosstalk between adiponectin signalling and insulin signalling pathways. These results demonstrate a key function for APPL1 in adiponectin signalling and provide a molecular mechanism for the insulin sensitizing function of adiponectin.  相似文献   

9.
Adequate exercise leads to a vast variety of physiological changes in skeletal muscle as well as other tissues/organs and is also responsible for maintaining healthy muscle displaying enhanced insulin-responsive glucose uptake via GLUT4 translocation. We generated highly developed contractile C(2)C(12) myotubes by manipulating intracellular Ca(2+) transients with electric pulse stimulation (EPS) that is endowed with properties similar to those of in vivo skeletal muscle in terms of 1) excitation-induced contractile activity as a result of de novo sarcomere formation, 2) activation of both the AMP kinase and stress-activated MAP kinase cascades, and 3) improved insulin responsiveness as assessed by GLUT4 recycling. Tbc1d1, a Rab-GAP implicated in exercise-induced GLUT4 translocation in skeletal muscle, also appeared to be phosphorylated on Ser(231) after EPS-induced contraction. In addition, a switch in myosin heavy-chain (MHC) expression from "fast type" to "slow type" was observed in the C(2)C(12) myotubes endowed with EPS-induced repetitive contractility. Taking advantage of these highly developed contractile C(2)C(12) myotubes, we identified myotube-derived factors responsive to EPS-evoked contraction, including the CXC chemokines CXCL1/KC and CXCL5/LIX, as well as IL-6, previously reported to be upregulated in contracting muscles in vivo. Importantly, animal treadmill experiments revealed that exercise significantly increased systemic levels of CXCL1/KC, perhaps derived from contracting muscle. Taken together, these results confirm that we have established a specialized muscle cell culture model allowing contraction-inducible cellular responses to be explored. Utilizing this model, we identified contraction-inducible myokines potentially linked to the metabolic alterations, immune responses, and angiogenesis induced by exercise.  相似文献   

10.
Insulin regulates glucose transport in muscle and adipose tissue by triggering the translocation of a facilitative glucose transporter, GLUT4, from an intracellular compartment to the cell surface. It has previously been suggested that GLUT4 is segregated between endosomes, the trans-Golgi network (TGN), and a postendosomal storage compartment. The aim of the present study was to isolate the GLUT4 storage compartment in order to determine the relationship of this compartment to other organelles, its components, and its presence in different cell types. A crude intracellular membrane fraction was prepared from 3T3-L1 adipocytes and subjected to iodixanol equilibrium sedimentation analysis. Two distinct GLUT4-containing vesicle peaks were resolved by this procedure. The lighter of the two peaks (peak 2) was comprised of two overlapping peaks: peak 2b contained recycling endosomal markers such as the transferrin receptor (TfR), cellubrevin, and Rab4, and peak 2a was enriched in TGN markers (syntaxin 6, the cation-dependent mannose 6-phosphate receptor, sortilin, and sialyltransferase). Peak 1 contained a significant proportion of GLUT4 with a smaller but significant amount of cellubrevin and relatively little TfR. In agreement with these data, internalized transferrin (Tf) accumulated in peak 2 but not peak 1. There was a quantitatively greater loss of GLUT4 from peak 1 than from peak 2 in response to insulin stimulation. These data, combined with the observation that GLUT4 became more sensitive to ablation with Tf-horseradish peroxidase following insulin treatment, suggest that the vesicles enriched in peak 1 are highly insulin responsive. Iodixanol gradient analysis of membranes isolated from other cell types indicated that a substantial proportion of GLUT4 was targeted to peak 1 in skeletal muscle, whereas in CHO cells most of the GLUT4 was targeted to peak 2. These results indicate that in insulin-sensitive cells GLUT4 is targeted to a subpopulation of vesicles that appear, based on their protein composition, to be a derivative of the endosome. We suggest that the biogenesis of this compartment may mediate withdrawal of GLUT4 from the recycling system and provide the basis for the marked insulin responsiveness of GLUT4 that is unique to muscle and adipocytes.  相似文献   

11.
Insulin-responsive GLUT4 (glucose transporter 4) translocation plays a major role in regulating glucose uptake in adipose tissue and muscle. Whether or not there is a specialized secretory GSV (GLUT4 storage vesicle) pool, and more importantly how GSVs are translocated to the PM (plasma membrane) under insulin stimulation is still under debate. In the present study, we systematically analyzed the dynamics of a large number of single GLUT4-containing vesicles in 3T3-L1 adipocytes by TIRFM (total internal reflection fluorescence microscopy). We found that GLUT4-containing vesicles can be classified into three groups according to their mobility, namely vertical, stable, and lateral GLUT4-containing vesicles. Among these groups, vertical GLUT4-containing vesicles exclude transferrin receptors and move towards the PM specifically in response to insulin stimulation, while stable and lateral GLUT4-containing vesicles contain transferrin receptors and show no insulin responsiveness. These data demonstrate that vertical GLUT4-containing vesicles correspond to specialized secretory GSVs, which approach the PM directly and bypass the constitutive recycling pathway. Contributed equally to this work Supported by the National Natural Science Foundation of China (Grant Nos. 30470448 and 30130230), the National key Basic Research Program of China (Grant No. 2004CB720000), the Knowledge Innovative Program of The Chinese Academy of Sciences (Grant Nos. KSCX2-SW-224 and Y2004018), the Li Foundation and the Sinogerman Scientific Center.  相似文献   

12.
Phosphotyrosine binding (PTB) domains of the adaptor protein Shc and insulin receptor substrate (IRS-1) interact with a distinct set of activated and tyrosine-phosphorylated cytokine and growth factor receptors and play important roles in mediating mitogenic signal transduction. By using the technique of isothermal titration calorimetry, we have studied the thermodynamics of binding of the Shc and IRS-1 PTB domains to tyrosine-phosphorylated NPXY-containing peptides derived from known receptor binding sites. The results showed that relative contributions of enthalpy and entropy to the free energy of binding are dependent on specific phosphopeptides. Binding of the Shc PTB domain to tyrosine-phosphorylated peptides from TrkA, epidermal growth factor, ErbB3, and insulin receptors is achieved via an overall entropy-driven reaction. On the other hand, recognition of the phosphopeptides of insulin and interleukin-4 receptors by the IRS-1 PTB domain is predominantly an enthalpy-driven process. Mutagenesis and amino acid substitution experiments showed that in addition to the tyrosine-phosphorylated NPXY motif, the PTB domains of Shc and IRS-1 prefer a large hydrophobic residue at pY-5 and a small hydrophobic residue at pY-1, respectively (where pY is phosphotyrosine). These results agree with the calculated solvent accessibility of these two key peptide residues in the PTB domain/peptide structures and support the notion that the PTB domains of Shc and IRS-1 employ functionally distinct mechanisms to recognize tyrosine-phosphorylated receptors.  相似文献   

13.
Insulin stimulates glucose uptake in 3T3-L1 adipocytes in part by causing endoproteolytic cleavage of TUG (tether containing a ubiquitin regulatory X (UBX) domain for glucose transporter 4 (GLUT4)). Cleavage liberates intracellularly sequestered GLUT4 glucose transporters for translocation to the cell surface. To test the role of this regulation in muscle, we used mice with muscle-specific transgenic expression of a truncated TUG fragment, UBX-Cter. This fragment causes GLUT4 translocation in unstimulated 3T3-L1 adipocytes. We predicted that transgenic mice would have GLUT4 translocation in muscle during fasting. UBX-Cter expression caused depletion of PIST (PDZ domain protein interacting specifically with TC10), which transmits an insulin signal to TUG. Whereas insulin stimulated TUG proteolysis in control muscles, proteolysis was constitutive in transgenic muscles. Fasting transgenic mice had decreased plasma glucose and insulin concentrations compared with controls. Whole-body glucose turnover was increased during fasting but not during hyperinsulinemic clamp studies. In muscles with the greatest UBX-Cter expression, 2-deoxyglucose uptake during fasting was similar to that in control muscles during hyperinsulinemic clamp studies. Fasting transgenic mice had increased muscle glycogen, and GLUT4 targeting to T-tubule fractions was increased 5.7-fold. Whole-body oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure were increased by 12–13%. After 3 weeks on a high fat diet, the decreased fasting plasma glucose in transgenic mice compared with controls was more marked, and increased glucose turnover was not observed; the transgenic mice continued to have an increased metabolic rate. We conclude that insulin stimulates TUG proteolysis to translocate GLUT4 in muscle, that this pathway impacts systemic glucose homeostasis and energy metabolism, and that the effects of activating this pathway are maintained during high fat diet-induced insulin resistance in mice.  相似文献   

14.
Insulin stimulates glucose transport in muscle and adipose tissues by recruiting intracellular membrane vesicles containing the glucose transporter GLUT4 to the plasma membrane. The mechanisms involved in the biogenesis of these vesicles and their translocation to the cell surface are poorly understood. Here, we report that an Eps15 homology (EH) domain-containing protein, EHD1, controls the normal perinuclear localization of GLUT4-containing membranes and is required for insulin-stimulated recycling of these membranes in cultured adipocytes. EHD1 is a member of a family of four closely related proteins (EHD1, EHD2, EHD3, and EHD4), which also contain a P-loop near the N terminus and a central coiled-coil domain. Analysis of cultured adipocytes stained with anti-GLUT4, anti-EHD1, and anti-EHD2 antibodies revealed that EHD1, but not EHD2, partially co-localizes with perinuclear GLUT4. Expression of a dominant-negative construct of EHD1 missing the EH domain (DeltaEH-EHD1) markedly enlarged endosomes, dispersed perinuclear GLUT4-containing membranes throughout the cytoplasm, and inhibited GLUT4 translocation to the plasma membranes of 3T3-L1 adipocytes stimulated with insulin. Similarly, small interfering RNA-mediated depletion of endogenous EHD1 protein also markedly dispersed perinuclear GLUT4 in cultured adipocytes. Moreover, EHD1 is shown to interact through its EH domain with the protein EHBP1, which is also required for insulin-stimulated GLUT4 movements and hexose transport. In contrast, disruption of EHD2 function was without effect on GLUT4 localization or translocation to the plasma membrane. Taken together, these results show that EHD1 and EHBP1, but not EHD2, are required for perinuclear localization of GLUT4 and reveal that loss of EHBP1 disrupts insulin-regulated GLUT4 recycling in cultured adipocytes.  相似文献   

15.
This historical review describes the research on the regulation of glucose transport in skeletal muscle conducted in my laboratory and in collaboration with a number of colleagues in other laboratories. This research includes studies of stimulation of glucose transport, GLUT4 translocation, and GLUT4 expression by exercise/muscle contractions, the role of Ca(2+) in these processes, and the interactions between the effects of exercise and insulin. Among the last are the additive effects of insulin and contractions on glucose transport and GLUT4 translocation and the increases in muscle insulin sensitivity and responsiveness induced by exercise.  相似文献   

16.
17.
Intrauterine growth restriction (IUGR) leads to obesity, glucose intolerance, and type 2 diabetes mellitus in the adult. To determine the mechanism(s) behind this "metabolic imprinting" phenomenon, we examined the effect of total calorie restriction during mid- to late gestation modified by postnatal ad libitum access to nutrients (CM/SP) or nutrient restriction (SM/SP) vs. postnatal nutrient restriction alone (SM/CP) on skeletal muscle and white adipose tissue (WAT) insulin-responsive glucose transporter isoform (GLUT4) expression and insulin-responsive translocation. A decline in skeletal muscle GLUT4 expression and protein concentrations was noted only in the SM/SP and SM/CP groups. In contrast, WAT demonstrated no change in GLUT4 expression and protein concentrations in all experimental groups. The altered in utero hormonal/metabolic milieu was associated with a compensatory adaptation that persisted in the adult and consisted of an increase in the skeletal muscle basal plasma membrane-associated GLUT4 concentrations. This perturbation led to no further exogenous insulin-induced GLUT4 translocation, thereby disabling the insulin responsiveness of the skeletal muscle but retaining it in WAT. These changes, which present at birth, collectively maximize basal glucose transport to the compromised skeletal muscle with a relative resistance to exogenous/postprandial insulin. Preservation of insulin responsiveness in WAT may serve as a sink that absorbs postprandial nutrients that can no longer efficiently access skeletal muscle. We speculate that, in utero, GLUT4 aberrations may predict type 2 diabetes mellitus, whereas postnatal nutrient intake may predict obesity, thereby explaining the heterogeneous phenotype of the IUGR adult offspring.  相似文献   

18.
L6 skeletal muscle myoblasts stably overexpressing glucose transporter GLUT1 or GLUT4 with exofa- cial myc-epitope tags were characterized for their response to insulin. In clonally selected cultures, 2-deoxyglucose uptake into L6-GLUT1myc myoblasts and myotubes was linear within the time of study. In L6-GLUT1myc and L6-GLUT4myc myoblasts, 100 nmol/L insulin treatment increased the GLUT1 content of the plasma membrane by 1.58±0.01 fold and the GLUT4 content 1.96±0.11 fold, as well as the 2-deoxyglucose uptake 1.53±0.09 and 1.86±0.17 fold respectively, all by a wortmannin-inhibitable manner. The phosphorylation of Akt in these two cell lines was increased by insulin. L6-GLUT1myc myoblasts showed a dose-dependent stimulation of glucose uptake by insulin, with unaltered sensitiv- ity and maximal responsiveness compared with wild type cells. By contrast, the improved insulin re- sponsiveness and sensitivity of glucose uptake were observed in L6-GLUT4myc myoblasts. Earlier studies indicated that forskolin might affect insulin-stimulated GLUT4 translocation. A 65% decrease of insulin-stimulated 2-deoxyglucose uptake in GLUT4myc cells was not due to an effect on GLUT4 mobi- lization to the plasma membrane, but instead on direct inhibition of GLUT4. Forskolin and dipyridamole are more potent inhibitors of GLUT4 than GLUT1. Alternatively, pentobarbital inhibits GLUT1 more than GLUT4. The use of these inhibitors confirmed that the overexpressed GLUT1 or GLUT4 are the major functional glucose transporters in unstimulated and insulin-stimulated L6 myoblasts. Therefore, L6-GLUT1myc and L6-GLUT4myc cells provide a platform to screen compounds that may have differ- ential effects on GLUT isoform activity or may influence GLUT isoform mobilization to the cell surface of muscle cells.  相似文献   

19.
L6 skeletal muscle myoblasts stably overexpressing glucose transporter GLUT1 or GLUT4 with exofacial myc-epitope tags were characterized for their response to insulin. In clonally selected cultures, 2-deoxyglucose uptake into L6-GLUT1myc myoblasts and myotubes was linear within the time of study. In L6-GLUT1myc and L6-GLUT4myc myoblasts, 100 nmol/L insulin treatment increased the GLUT1 content of the plasma membrane by 1.58±0.01 fold and the GLUT4 content 1.96±0.11 fold, as well as the 2-deoxyglucose uptake 1.53±0.09 and 1.86±0.17 fold respectively, all by a wortmannin-inhibitable manner. The phosphorylation of Akt in these two cell lines was increased by insulin. L6-GLUT1myc myoblasts showed a dose-dependent stimulation of glucose uptake by insulin, with unaltered sensitivity and maximal responsiveness compared with wild type cells. By contrast, the improved insulin responsiveness and sensitivity of glucose uptake were observed in L6-GLUT4myc myoblasts. Earlier studies indicated that forskolin might affect insulin-stimulated GLUT4 translocation. A 65% decrease of insulin-stimulated 2-deoxyglucose uptake in GLUT4myc cells was not due to an effect on GLUT4 mobilization to the plasma membrane, but instead on direct inhibition of GLUT4. Forskolin and dipyridamole are more potent inhibitors of GLUT4 than GLUT1. Alternatively, pentobarbital inhibits GLUT1 more than GLUT4. The use of these inhibitors confirmed that the overexpressed GLUT1 or GLUT4 are the major functional glucose transporters in unstimulated and insulin-stimulated L6 myoblasts. Therefore, L6-GLUT1myc and L6-GLUT4myc cells provide a platform to screen compounds that may have differential effects on GLUT isoform activity or may influence GLUT isoform mobilization to the cell surface of muscle cells.  相似文献   

20.
Several studies have demonstrated that the intrinsic catalytic activity of cell surface glucose transporters is highly regulated in 3T3-L1 adipocytes expressing GLUT1 (erythrocyte/brain) and GLUT4 (adipocyte/skeletal muscle) glucose transporter isoforms. For example, inhibition of protein synthesis in these cells by anisomycin or cycloheximide leads to marked increases in hexose transport without a change in the levels of cell surface glucose transporter proteins (Clancy, B. M., Harrison, S. A., Buxton, J. M., and Czech, M. P. (1991) J. Biol. Chem. 266, 10122-10130). In the present work the exofacial hexose binding sites on GLUT1 and GLUT4 in anisomycin-treated 3T3-L1 adipocytes were labeled with the cell-impermeant photoaffinity reagent [2-3H]2-N-[4-(1-azitrifluoroethyl)benzoyl]-1,3-bis- (D-mannos-4-yloxy)-2-propylamine [( 2-3H] ATB-BMPA) to determine which isoform is activated by protein synthetic blockade. As expected, a 15-fold increase in 2-deoxyglucose uptake in response to insulin was associated with 1.7- and 2.6-fold elevations in plasma membrane GLUT1 and GLUT4 protein levels, respectively. Anisomycin treatment of cultured adipocytes for 5 h produced an 8-fold stimulation of hexose transport but no increase in the content of glucose transporters in the plasma membrane fraction as measured by protein immunoblot analysis. Cell surface GLUT1 levels were also shown to be unaffected on 3T3-L1 adipocytes in response to anisomycin using an independent method, the binding of an antiexofacial GLUT1 antibody to intact cells. In contrast, anisomycin fully mimicked the action of insulin to stimulate (about 4-fold) the radiolabeling of GLUT1 transporters specifically immunoprecipitated from intact 3T3-L1 adipocytes irradiated after incubation with [2-3H] ATB-BMPA. Photolabeling of GLUT4 under these conditions was also significantly enhanced (1.8-fold) by anisomycin treatment, but this effect was only 15% of that caused by insulin. These results suggest that: 1) the photoaffinity reagent [2-3H]ATB-BMPA labels those cell surface glucose transporters present in a catalytically active state rather than total cell surface transporters as assumed previously and 2) inhibition of protein synthesis in 3T3-L1 adipocytes stimulates sugar transport primarily by enhancing the intrinsic catalytic activity of cell surface GLUT1, and to a lesser extent, GLUT4 proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号