首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many behaviourally relevant sensory events such as motion stimuli and speech have an intrinsic spatio-temporal structure. This will engage intentional and most likely unintentional (automatic) prediction mechanisms enhancing the perception of upcoming stimuli in the event stream. Here we sought to probe the anticipatory processes that are automatically driven by rhythmic input streams in terms of their spatial and temporal components. To this end, we employed an apparent visual motion paradigm testing the effects of pre-target motion on lateralized visual target discrimination. The motion stimuli either moved towards or away from peripheral target positions (valid vs. invalid spatial motion cueing) at a rhythmic or arrhythmic pace (valid vs. invalid temporal motion cueing). Crucially, we emphasized automatic motion-induced anticipatory processes by rendering the motion stimuli non-predictive of upcoming target position (by design) and task-irrelevant (by instruction), and by creating instead endogenous (orthogonal) expectations using symbolic cueing. Our data revealed that the apparent motion cues automatically engaged both spatial and temporal anticipatory processes, but that these processes were dissociated. We further found evidence for lateralisation of anticipatory temporal but not spatial processes. This indicates that distinct mechanisms may drive automatic spatial and temporal extrapolation of upcoming events from rhythmic event streams. This contrasts with previous findings that instead suggest an interaction between spatial and temporal attention processes when endogenously driven. Our results further highlight the need for isolating intentional from unintentional processes for better understanding the various anticipatory mechanisms engaged in processing behaviourally relevant stimuli with predictable spatio-temporal structure such as motion and speech.  相似文献   

2.
Oscillatory entrainment to the speech signal is important for language processing, but has not yet been studied in developmental disorders of language. Developmental dyslexia, a difficulty in acquiring efficient reading skills linked to difficulties with phonology (the sound structure of language), has been associated with behavioural entrainment deficits. It has been proposed that the phonological ‘deficit’ that characterises dyslexia across languages is related to impaired auditory entrainment to speech at lower frequencies via neuroelectric oscillations (<10 Hz, ‘temporal sampling theory’). Impaired entrainment to temporal modulations at lower frequencies would affect the recovery of the prosodic and syllabic structure of speech. Here we investigated event-related oscillatory EEG activity and contingent negative variation (CNV) to auditory rhythmic tone streams delivered at frequencies within the delta band (2 Hz, 1.5 Hz), relevant to sampling stressed syllables in speech. Given prior behavioural entrainment findings at these rates, we predicted functionally atypical entrainment of delta oscillations in dyslexia. Participants performed a rhythmic expectancy task, detecting occasional white noise targets interspersed with tones occurring regularly at rates of 2 Hz or 1.5 Hz. Both groups showed significant entrainment of delta oscillations to the rhythmic stimulus stream, however the strength of inter-trial delta phase coherence (ITC, ‘phase locking’) and the CNV were both significantly weaker in dyslexics, suggestive of weaker entrainment and less preparatory brain activity. Both ITC strength and CNV amplitude were significantly related to individual differences in language processing and reading. Additionally, the instantaneous phase of prestimulus delta oscillation predicted behavioural responding (response time) for control participants only.  相似文献   

3.
Viewing a face with averted gaze results in a spatial shift of attention in the corresponding direction, a phenomenon defined as gaze-mediated orienting. In the present paper, we investigated whether this effect is influenced by social factors. Across three experiments, White and Black participants were presented with faces of White and Black individuals. A modified spatial cueing paradigm was used in which a peripheral target stimulus requiring a discrimination response was preceded by a noninformative gaze cue. Results showed that Black participants shifted attention to the averted gaze of both ingroup and outgroup faces, whereas White participants selectively shifted attention only in response to individuals of their same group. Interestingly, the modulatory effect of social factors was context-dependent and emerged only when group membership was situationally salient to participants. It was hypothesized that differences in the relative social status of the two groups might account for the observed asymmetry between White and Black participants. A final experiment ruled out an alternative explanation based on differences in perceptual familiarity with the face stimuli. Overall, these findings strengthen the idea that gaze-mediated orienting is a socially-connoted phenomenon.  相似文献   

4.
Cells selectively responsive to the face have been found in several visual sub-areas of temporal cortex in the macaque brain. These include the lateral and ventral surfaces of inferior temporal cortex and the upper bank, lower bank and fundus of the superior temporal sulcus (STS). Cells in the different regions may contribute in different ways to the processing of the facial image. Within the upper bank of the STS different populations of cells are selective for different views of the face and head. These cells occur in functionally discrete patches (3-5 mm across) within the STS cortex. Studies of output connections from the STS also reveal a modular anatomical organization of repeating 3-5 mm patches connected to the parietal cortex, an area thought to be involved in spatial awareness and in the control of attention. The properties of some cells suggest a role in the discrimination of heads from other objects, and in the recognition of familiar individuals. The selectivity for view suggests that the neural operations underlying face or head recognition rely on parallel analyses of different characteristic views of the head, the outputs of these view-specific analyses being subsequently combined to support view-independent (object-centred) recognition. An alternative functional interpretation of the sensitivity to head view is that the cells enable an analysis of 'social attention', i.e. they signal where other individuals are directing their attention. A cell maximally responsive to the left profile thus provides a signal that the attention (of another individual) is directed to the observer's left. Such information is useful for analysing social interactions between other individuals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Animals can adjust their behaviours depending on ecological context (i.e., behavioural plasticity), and an individual's response to a given context may also vary from occasion to occasion (intra‐individual variability). Recognizing the roles of both behavioural plasticity and intra‐individual variability is important in understanding how behavioural diversity is maintained within populations. However, how the ecological context itself influences the individual behavioural response and intra‐individual variability (e.g., how variable an individual is in their behavioural expression) remains largely unexplored. Here, we examine boldness expression (the duration of startle response) in a specialised spider‐eating jumping spider, Portia labiata, across three contexts following a mild disturbance: presence of a conspecific intruder (most dangerous), environmental change but no conspecific intruder, and no conspecific intruder or environmental change (safest). We found that context does not significantly influence the average boldness expression at the population level. However, each individual responded to each context differently, and the repeatability of boldness expression—the proportion of behavioural variation attributable to the between ‐individual level—is context‐dependent. We also found that in the presence of a conspecific intruder, spiders behave less predictably than in the environmental change context, but not differently from the safest context. These findings may suggest that the presence of conspecifics influences behavioural consistency in individuals, but that this may occur without influencing the population average behaviour.  相似文献   

6.
Mechano-regulation during tendon healing, i.e. the relationship between mechanical stimuli and cellular response, has received more attention recently. However, the basic mechanobiological mechanisms governing tendon healing after a rupture are still not well-understood. Literature has reported spatial and temporal variations in the healing of ruptured tendon tissue. In this study, we explored a computational modeling approach to describe tendon healing. In particular, a novel 3D mechano-regulatory framework was developed to investigate spatio-temporal evolution of collagen content and orientation, and temporal evolution of tendon stiffness during early tendon healing. Based on an extensive literature search, two possible relationships were proposed to connect levels of mechanical stimuli to collagen production. Since literature remains unclear on strain-dependent collagen production at high levels of strain, the two investigated production laws explored the presence or absence of collagen production upon non-physiologically high levels of strain (>15%). Implementation in a finite element framework, pointed to large spatial variations in strain magnitudes within the callus tissue, which resulted in predictions of distinct spatial distributions of collagen over time. The simulations showed that the magnitude of strain was highest in the tendon core along the central axis, and decreased towards the outer periphery. Consequently, decreased levels of collagen production for high levels of tensile strain were shown to accurately predict the experimentally observed delayed collagen production in the tendon core. In addition, our healing framework predicted evolution of collagen orientation towards alignment with the tendon axis and the overall predicted tendon stiffness agreed well with experimental data. In this study, we explored the capability of a numerical model to describe spatial and temporal variations in tendon healing and we identified that understanding mechano-regulated collagen production can play a key role in explaining heterogeneities observed during tendon healing.  相似文献   

7.
This article makes use of a push-pull shunting network, which was introduced in the companion article, to model certain properties of X and Y retinal ganglion cells. Input to the push-pull network is preprocessed by a nonlinear mechanism for temporal adaptation, which is ascribed here to photoreceptor dynamics. The complete circuit is used to show that a simple change in receptive field morphology within a single model equation can change the network's response characteristics to closely resemble those of either X or Y cells. Specifically, an increase in width of the receptive field center mechanism is sufficient to account for generation of on-off (Y-like) instead of null (X-like) responses to modulated gratings. In agreement with experimental data, the Y cell on-off response is independent of spatial phase. Also, the model accurately predicts that on-off responses can be observed in X cells for particular stimulus configurations. Taken together, the results show how the retina combines individually inadequate modules to efficiently handle the tasks required for accurate spatial and temporal visual information processing. The model is also able to clarify a number of controversial experimental findings on the nature of spatiotemporal visual processing in the retina.  相似文献   

8.
Social interaction starts with perception of other persons. One of the first steps in perception is processing of basic information such as spatial frequencies (SF), which represent details and global information. However, although behavioural perception of SF is well investigated, the developmental trajectory of the temporal characteristics of SF processing is not yet well understood. The speed of processing of this basic visual information is crucial, as it determines the speed and possibly accuracy of subsequent visual and social processes. The current study investigated developmental changes in the temporal characteristics of selective processing of high SF (HSF; details) versus low SF (LSF; global). To this end, brain activity was measured using EEG in 108 children aged 3–15 years, while HSF or LSF grating stimuli were presented. Interest was in the temporal characteristics of brain activity related to LSF and HSF processing, specifically at early (N80) or later (P1 or N2) peaks in brain activity. Analyses revealed that from 7–8 years onwards HSF but not LSF stimuli evoked an N80 peak. In younger children, aged 3–8 years, the visual manipulation mainly affected the visual N2 peak. Selective processing of HSF versus LSF thus occurs at a rather late time-point (N2 peak) in young children. Although behavioural research previously showed that 3–6 year-olds can perceive detailed information, the current results point out that selective processing of HSF versus LSF is still delayed in these children. The delayed processing in younger children could impede the use of LSF and HSF for emotional face processing. Thus, the current study is a starting point for understanding changes in basic visual processing which underlie social development.  相似文献   

9.
Most people are right-handed and left-cerebrally dominant for speech, leading historically to the general notion of left-hemispheric dominance, and more recently to genetic models proposing a single lateralizing gene. This hypothetical gene can account for higher incidence of right-handers in those with left cerebral dominance for speech. It remains unclear how this dominance relates to the right-cerebral dominance for some nonverbal functions such as spatial or emotional processing. Here we use functional magnetic resonance imaging with a sample of 155 subjects to measure asymmetrical activation induced by speech production in the frontal lobes, by face processing in the temporal lobes, and by spatial processing in the parietal lobes. Left-frontal, right-temporal, and right-parietal dominance were all intercorrelated, suggesting that right-cerebral biases may be at least in part complementary to the left-hemispheric dominance for language. However, handedness and parietal asymmetry for spatial processing were uncorrelated, implying independent lateralizing processes, one producing a leftward bias most closely associated with handedness, and the other a rightward bias most closely associated with spatial attention.  相似文献   

10.
Faces are among the most important visual stimuli we perceive, informing us not only about a person's identity, but also about their mood, sex, age and direction of gaze. The ability to extract this information within a fraction of a second of viewing a face is important for normal social interactions and has probably played a critical role in the survival of our primate ancestors. Considerable evidence from behavioural, neuropsychological and neurophysiological investigations supports the hypothesis that humans have specialized cognitive and neural mechanisms dedicated to the perception of faces (the face-specificity hypothesis). Here, we review the literature on a region of the human brain that appears to play a key role in face perception, known as the fusiform face area (FFA). Section 1 outlines the theoretical background for much of this work. The face-specificity hypothesis falls squarely on one side of a longstanding debate in the fields of cognitive science and cognitive neuroscience concerning the extent to which the mind/brain is composed of: (i) special-purpose ('domain-specific') mechanisms, each dedicated to processing a specific kind of information (e.g. faces, according to the face-specificity hypothesis), versus (ii) general-purpose ('domain-general') mechanisms, each capable of operating on any kind of information. Face perception has long served both as one of the prime candidates of a domain-specific process and as a key target for attack by proponents of domain-general theories of brain and mind. Section 2 briefly reviews the prior literature on face perception from behaviour and neurophysiology. This work supports the face-specificity hypothesis and argues against its domain-general alternatives (the individuation hypothesis, the expertise hypothesis and others). Section 3 outlines the more recent evidence on this debate from brain imaging, focusing particularly on the FFA. We review the evidence that the FFA is selectively engaged in face perception, by addressing (and rebutting) five of the most widely discussed alternatives to this hypothesis. In section 4, we consider recent findings that are beginning to provide clues into the computations conducted in the FFA and the nature of the representations the FFA extracts from faces. We argue that the FFA is engaged both in detecting faces and in extracting the necessary perceptual information to recognize them, and that the properties of the FFA mirror previously identified behavioural signatures of face-specific processing (e.g. the face-inversion effect). Section 5 asks how the computations and representations in the FFA differ from those occurring in other nearby regions of cortex that respond strongly to faces and objects. The evidence indicates clear functional dissociations between these regions, demonstrating that the FFA shows not only functional specificity but also area specificity. We end by speculating in section 6 on some of the broader questions raised by current research on the FFA, including the developmental origins of this region and the question of whether faces are unique versus whether similarly specialized mechanisms also exist for other domains of high-level perception and cognition.  相似文献   

11.
Consistent individual differences (CIDs) in behaviour, indicative of behavioural types or personalities, have been shown in taxa ranging from Cnidaria to Mammalia. However, despite numerous theoretical explanations there remains limited empirical evidence for selective mechanisms that maintain such variation within natural populations. We examined behavioural types and fitness proxies in wild female grey seals at the North Rona breeding colony. Experiments in 2009 and 2010 employed a remotely-controlled vehicle to deliver a novel auditory stimulus to females to elicit changes in pup-checking behaviour. Mothers tested twice during lactation exhibited highly repeatable individual pup-checking rates within and across breeding seasons. Observations of undisturbed mothers (i.e. experiencing no disturbance from conspecifics or experimental test) also revealed CIDs in pup-checking behaviour. However, there was no correlation between an individuals’ pup-checking rate during undisturbed observations with the rate in response to the auditory test, indicating plasticity across situations. The extent to which individuals changed rates of pup-checking from undisturbed to disturbed conditions revealed a continuum of behavioural types from proactive females, who maintained a similar rate throughout, to reactive females, who increased pup-checking markedly in response to the test. Variation in maternal expenditure (daily mass loss rate) was greater among more reactive mothers than proactive mothers. Consequently pups of more reactive mothers had more varied growth rates centred around the long-term population mean. These patterns could not be accounted for by other measured covariates as behavioural type was unrelated to a mother’s prior experience, degree of inter-annual site fidelity, physical characteristics of their pupping habitat, pup sex or pup activity. These findings are consistent with the hypothesis that variation in behavioural types is maintained by spatial and temporal environmental variation combined with limits to phenotype-environment matching.  相似文献   

12.
Responses are quicker to predictable stimuli than if the time and place of appearance is uncertain. Studies that manipulate target predictability often involve overt cues to speed up response times. However, less is known about whether individuals will exhibit faster response times when target predictability is embedded within the inter-trial relationships. The current research examined the combined effects of spatial and temporal target predictability on reaction time (RT) and allocation of overt attention in a sustained attention task. Participants responded as quickly as possible to stimuli while their RT and eye movements were measured. Target temporal and spatial predictability were manipulated by altering the number of: 1) different time intervals between a response and the next target; and 2) possible spatial locations of the target. The effects of target predictability on target detection (Experiment 1) and target discrimination (Experiment 2) were tested. For both experiments, shorter RTs as target predictability increased across both space and time were found. In addition, the influences of spatial and temporal target predictability on RT and the overt allocation of attention were task dependent; suggesting that effective orienting of attention relies on both spatial and temporal predictability. These results indicate that stimulus predictability can be increased without overt cues and detected purely through inter-trial relationships over the course of repeated stimulus presentations.  相似文献   

13.
The neural basis of selective spatial attention presents a significant challenge to cognitive neuroscience. Recent neuroimaging studies have suggested that regions of the parietal and temporal cortex constitute a "supramodal" network that mediates goal-directed attention in multiple sensory modalities. Here we used transcranial magnetic stimulation (TMS) to determine which cortical subregions control strategic attention in vision and touch. Healthy observers undertook an orienting task in which a central arrow cue predicted the location of a subsequent visual or somatosensory target. To determine the attentional role of cortical subregions at different stages of processing, TMS was delivered to the right hemisphere during cue or target events. Results indicated a critical role of the inferior parietal cortex in strategic orienting to visual events, but not to somatosensory events. These findings are inconsistent with the existence of a supramodal attentional network and instead provide direct evidence for modality-specific attentional processing in parietal cortex.  相似文献   

14.
Z Wang  J Theeuwes 《PloS one》2012,7(8):e44290
Inhibition of return (IOR) refers to the relative suppression of processing at locations that have recently been attended. It is frequently explored using a spatial cueing paradigm and is characterized by slower responses to cued than to uncued locations. The current study investigates the impact of IOR on overt visual orienting involving saccadic eye movements. Using a spatial cueing paradigm, our experiments have demonstrated that at a cue-target onset asynchrony (CTOA) of 400 ms saccades to the vicinity of cued locations are not only delayed (temporal cost) but also biased away (spatial effect). Both of these effects are basically no longer present at a CTOA of 1200 ms. At a shorter 200 ms CTOA, the spatial effect becomes stronger while the temporal cost is replaced by a temporal benefit. These findings suggest that IOR has a spatial effect that is dissociable from its temporal effect. Simulations using a neural field model of the superior colliculus (SC) revealed that a theory relying on short-term depression (STD) of the input pathway can explain most, but not all, temporal and spatial effects of IOR.  相似文献   

15.
Boh B  Herholz SC  Lappe C  Pantev C 《PloS one》2011,6(7):e21458
In the present study we investigated the capacity of the memory store underlying the mismatch negativity (MMN) response in musicians and nonmusicians for complex tone patterns. While previous studies have focused either on the kind of information that can be encoded or on the decay of the memory trace over time, we studied capacity in terms of the length of tone sequences, i.e., the number of individual tones that can be fully encoded and maintained. By means of magnetoencephalography (MEG) we recorded MMN responses to deviant tones that could occur at any position of standard tone patterns composed of four, six or eight tones during passive, distracted listening. Whereas there was a reliable MMN response to deviant tones in the four-tone pattern in both musicians and nonmusicians, only some individuals showed MMN responses to the longer patterns. This finding of a reliable capacity of the short-term auditory store underlying the MMN response is in line with estimates of a three to five item capacity of the short-term memory trace from behavioural studies, although pitch and contour complexity covaried with sequence length, which might have led to an understatement of the reported capacity. Whereas there was a tendency for an enhancement of the pattern MMN in musicians compared to nonmusicians, a strong advantage for musicians could be shown in an accompanying behavioural task of detecting the deviants while attending to the stimuli for all pattern lengths, indicating that long-term musical training differentially affects the memory capacity of auditory short-term memory for complex tone patterns with and without attention. Also, a left-hemispheric lateralization of MMN responses in the six-tone pattern suggests that additional networks that help structuring the patterns in the temporal domain might be recruited for demanding auditory processing in the pitch domain.  相似文献   

16.
Top-down attention to spatial and temporal cues has been thoroughly studied in the visual domain. However, because the neural systems that are important for auditory top-down temporal attention (i.e., attention based on time interval cues) remain undefined, the differences in brain activity between directed attention to auditory spatial location (compared with time intervals) are unclear. Using fMRI (magnetic resonance imaging), we measured the activations caused by cue-target paradigms by inducing the visual cueing of attention to an auditory target within a spatial or temporal domain. Imaging results showed that the dorsal frontoparietal network (dFPN), which consists of the bilateral intraparietal sulcus and the frontal eye field, responded to spatial orienting of attention, but activity was absent in the bilateral frontal eye field (FEF) during temporal orienting of attention. Furthermore, the fMRI results indicated that activity in the right ventrolateral prefrontal cortex (VLPFC) was significantly stronger during spatial orienting of attention than during temporal orienting of attention, while the DLPFC showed no significant differences between the two processes. We conclude that the bilateral dFPN and the right VLPFC contribute to auditory spatial orienting of attention. Furthermore, specific activations related to temporal cognition were confirmed within the superior occipital gyrus, tegmentum, motor area, thalamus and putamen.  相似文献   

17.
Ant colonies that undergo long starvation periods have to tune their exploratory and foraging responses to face their food needs. Although the number of foragers is known to increase with food deprivation in the ant Lasius niger, such enhanced food exploitation is not related to a more intense recruitment by successful scouts. We thus suggest that the colony’s response to a food shortage could result from changes at the level of the ant recruits, in particular from changes in their spatial organization inside the nest. Since aggregation plays a key role in the social organization of ants, we assume that the colony’s response to starvation could be due to changes in the aggregative behaviour of L. niger nestmates.We thus compared the aggregation dynamics of inner-nest workers and foragers having undergone either a short or a long-lasting starvation period. Whatever the ethological group (foragers or inner-nest workers), there was no significant influence of starvation on the aggregation dynamics nor on any feature of the observed clusters. This result shows that an increased foraging response to food shortage cannot be explained by changes in the tendency of nestmates to aggregate within the nest. Finally, we discuss other behavioural mechanisms, in particular changes in behavioural thresholds that could underlie the adaptive changes seen in colony foraging after long starvation periods. Received 25 June 2007; revised 21 January 2008; accepted 24 January 2008.  相似文献   

18.
Different kinds of known faces activate brain areas to dissimilar degrees. However, the tuning to type of knowledge, and the temporal course of activation, of each area have not been well characterized. Here we measured, with functional magnetic resonance imaging, brain activity elicited by unfamiliar, visually familiar, and personally-familiar faces. We assessed response amplitude and duration using flexible hemodynamic response functions, as well as the tuning to face type, of regions within the face processing system. Core face processing areas (occipital and fusiform face areas) responded to all types of faces with only small differences in amplitude and duration. In contrast, most areas of the extended face processing system (medial orbito-frontal, anterior and posterior cingulate) had weak responses to unfamiliar and visually-familiar faces, but were highly tuned and exhibited prolonged responses to personally-familiar faces. This indicates that the neural processing of different types of familiar faces not only differs in degree, but is probably mediated by qualitatively distinct mechanisms.  相似文献   

19.
The spatial and temporal patterns exhibited by wild brown meagre, Sciaena umbra, during the sexual resting period were determined using an array of omnidirectional acoustic receivers. In mid‐October 2010, four individuals were tagged using internal acoustic tags and released into their natural habitat. Fish were monitored for up to 70 days within the array of the acoustic receivers. The results provided proof for a variety of aspects of the behavioural biology of this species, including strong site‐fidelity and low levels of mobility. No temporal patterns related to the diel phase were observed, nor was there any significant difference between the means of detection during the day or night. The observations on the use of space also suggest that the brown meagre is a sedentary species with a very limited adult dispersal capacity, spending much of its time within a small home range area (< 1 km2). However, a larger space was used during the night, suggesting an increase in fish activity. This study also provides recommendations for further research on spatial and temporal patterns over lengthy time periods and in different behavioural states such as during the spawning season.  相似文献   

20.
EE Birkett  JB Talcott 《PloS one》2012,7(8):e42820
Motor timing tasks have been employed in studies of neurodevelopmental disorders such as developmental dyslexia and ADHD, where they provide an index of temporal processing ability. Investigations of these disorders have used different stimulus parameters within the motor timing tasks that are likely to affect performance measures. Here we assessed the effect of auditory and visual pacing stimuli on synchronised motor timing performance and its relationship with cognitive and behavioural predictors that are commonly used in the diagnosis of these highly prevalent developmental disorders. Twenty-one children (mean age 9.6 years) completed a finger tapping task in two stimulus conditions, together with additional psychometric measures. As anticipated, synchronisation to the beat (ISI 329 ms) was less accurate in the visually paced condition. Decomposition of timing variance indicated that this effect resulted from differences in the way that visual and auditory paced tasks are processed by central timekeeping and associated peripheral implementation systems. The ability to utilise an efficient processing strategy on the visual task correlated with both reading and sustained attention skills. Dissociations between these patterns of relationship across task modality suggest that not all timing tasks are equivalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号