首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) belongs to the fibrillin-LTBP superfamily of extracellular matrix proteins. LTBPs and fibrillins are involved in the sequestration and storage of latent growth factors, particularly transforming growth factor β (TGF-β), in tissues. Unlike other LTBPs, LTBP-2 does not covalently bind TGF-β, and its molecular functions remain unclear. We are screening LTBP-2 for binding to other growth factors and have found very strong saturable binding to fibroblast growth factor-2 (FGF-2) (Kd = 1.1 nM). Using a series of recombinant LTBP-2 fragments a single binding site for FGF-2 was identified in a central region of LTBP-2 consisting of six tandem epidermal growth factor-like (EGF-like) motifs (EGFs 9–14). This region was also shown to contain a heparin/heparan sulphate-binding site. FGF-2 stimulation of fibroblast proliferation was completely negated by the addition of 5-fold molar excess of LTBP-2 to the assay. Confocal microscopy showed strong co-localisation of LTBP-2 and FGF-2 in fibrotic keloid tissue suggesting that the two proteins may interact in vivo. Overall the study indicates that LTBP-2 is a potent inhibitor of FGF-2 that may influence FGF-2 bioactivity during wound repair particularly in fibrotic tissues.  相似文献   

2.
3.
Spindle orientation and nuclear migration are crucial events in cell growth and differentiation of many eukaryotes. Here we show that KIP3, the sixth and final kinesin-related gene in Saccharomyces cerevisiae, is required for migration of the nucleus to the bud site in preparation for mitosis. The position of the nucleus in the cell and the orientation of the mitotic spindle was examined by microscopy of fixed cells and by time-lapse microscopy of individual live cells. Mutations in KIP3 and in the dynein heavy chain gene defined two distinct phases of nuclear migration: a KIP3-dependent movement of the nucleus toward the incipient bud site and a dynein-dependent translocation of the nucleus through the bud neck during anaphase. Loss of KIP3 function disrupts the unidirectional movement of the nucleus toward the bud and mitotic spindle orientation, causing large oscillations in nuclear position. The oscillatory motions sometimes brought the nucleus in close proximity to the bud neck, possibly accounting for the viability of a kip3 null mutant. The kip3 null mutant exhibits normal translocation of the nucleus through the neck and normal spindle pole separation kinetics during anaphase. Simultaneous loss of KIP3 and kinesin-related KAR3 function, or of KIP3 and dynein function, is lethal but does not block any additional detectable movement. This suggests that the lethality is due to the combination of sequential and possibly overlapping defects. Epitope-tagged Kip3p localizes to astral and central spindle microtubules and is also present throughout the cytoplasm and nucleus.  相似文献   

4.
5.

Background

Disheveled-associated activator of morphogenesis 1 (DAAM1) is a formin acting downstream of Wnt signaling that is important for planar cell polarity. It has been shown to promote proper cell polarization during embryonic development in both Xenopus and Drosophila. Importantly, DAAM1 binds to Disheveled (Dvl) and thus functions downstream of the Frizzled receptors. Little is known of how DAAM1 is localized and functions in mammalian cells. We investigate here how DAAM1 affects migration and polarization of cultured cells and conclude that it plays a key role in centrosome polarity.

Methodology/Principal Findings

Using a specific antibody to DAAM1, we find that the protein localizes to the acto-myosin system and co-localizes with ventral myosin IIB-containing actin stress fibers. These fibers are particularly evident in the sub-nuclear region. An N-terminal region of DAAM1 is responsible for this targeting and the DAAM1(1-440) protein can interact with myosin IIB fibers independently of either F-actin or RhoA binding. We also demonstrate that DAAM1 depletion inhibits Golgi reorientation in wound healing assays. Wound-edge cells exhibit multiple protrusions characteristic of unpolarized cell migration. Finally, in U2OS cells lines stably expressing DAAM1, we observe an enhanced myosin IIB stress fiber network which opposes cell migration.

Conclusions/Significance

This work highlights the importance of DAAM1 in processes underlying cell polarity and suggests that it acts in part by affecting the function of acto-myosin IIB system. It also emphasizes the importance of the N-terminal half of DAAM1. DAAM1 depletion strongly blocks centrosomal re-polarization, supporting the concept that DAAM1 signaling cooperates with the established Cdc42 associated polarity complex. These findings are also consistent with the observation that ablation of myosin IIB but not myosin IIA results in polarity defects downstream of Wnt signaling. The structure-function analysis of DAAM1 in cultured cells parallels more complex morphological events in the developing embryo.  相似文献   

6.
7.
3BP2 is a pleckstrin homology and Src homology 2 domain-containing adapter protein mutated in cherubism, a rare autosomal-dominant human bone disorder. Previously, we have demonstrated a functional role for 3BP2 in peripheral B cell development and in peritoneal B1 and splenic marginal zone B cell-mediated Ab responses. In this study, we show that 3BP2 is required for G protein-coupled receptor-mediated neutrophil functions. Neutrophils derived from 3BP2-deficient (Sh3bp2(-/-)) mice failed to polarize their actin cytoskeleton or migrate in response to a gradient of chemotactic peptide, fMLF. Sh3bp2(-/-) neutrophils failed to adhere, crawl, and emigrate out of the vasculature in response to fMLF superfusion. 3BP2 is required for optimal activation of Src family kinases, small GTPase Rac2, neutrophil superoxide anion production, and for Listeria monocytogenes bacterial clearance in vivo. The functional defects observed in Sh3bp2(-/-) neutrophils may partially be explained by the failure to fully activate Vav1 guanine nucleotide exchange factor and properly localize P-Rex1 guanine nucleotide exchange factor at the leading edge of migrating cells. Our results reveal an obligate requirement for the adapter protein 3BP2 in G protein-coupled receptor-mediated neutrophil function.  相似文献   

8.
FGF-21 is a key regulator of metabolism and potential drug candidate for the treatment of type II diabetes and other metabolic disorders. However, the half-life of active, circulating, human FGF-21 has recently been shown to be limited in mice and monkeys by a proteolytic cleavage between P171 and S172. Here, we show that fibroblast activation protein is the enzyme responsible for this proteolysis by demonstrating that purified FAP cleaves human FGF-21 at this site in vitro, and that an FAP-specific inhibitor, ARI-3099, blocks the activity in mouse, monkey and human plasma and prolongs the half-life of circulating human FGF-21 in mice. Mouse FGF-21, however, lacks the FAP cleavage site and is not cleaved by FAP. These findings indicate FAP may function in the regulation of metabolism and that FAP inhibitors may prove useful in the treatment of diabetes and metabolic disorders in humans, but pre-clinical proof of concept studies in rodents will be problematic.  相似文献   

9.
Frequent mutation of APC (90%) in advanced colorectal cancer (CRC) results in the simultaneous activation of Wnt/β-catenin and AKT signaling pathways, and the current therapeutic limitations of the AKT inhibitors for treating CRC patients are nuclear β-catenin-induced EMT and bypassing apoptosis. In this study, we discover that the combinatorial treatment of an AKT inhibitor and KY1022, a β-catenin destabilizer, effectively overcomes the current limitations of API-2, an AKT inhibitor, by reducing nuclear β-catenin. Taken together, we demonstrate that the simultaneous suppression of Wnt/β-catenin with the AKT signaling pathways is an ideal strategy for suppressing the AKT-inhibitor-mediated metastasis and for maximizing the therapeutic effects of AKT inhibitors.  相似文献   

10.
11.
12.
Induction of cell proliferation requires a concomitant increase in the synthesis of glycosylated lipids and membrane proteins, which is dependent on ER-Golgi protein transport by CopII-coated vesicles. In this process, retrograde transport of ER resident proteins from the Golgi is crucial to maintain ER integrity, and allows for anterograde transport to continue. We previously showed that expression of the CopI specific SNARE protein Use1 (Unusual SNARE in the ER 1) is tightly regulated by eIF4E-dependent translation initiation of Use1 mRNA. Here we investigate the mechanism that controls Use1 mRNA translation. The 5′UTR of mouse Use1 contains a 156 nt alternatively spliced intron. The non-spliced form is the predominantly translated mRNA. The alternatively spliced sequence contains G-repeats that bind the RNA-binding protein G-rich sequence binding factor 1 (Grsf1) in RNA band shift assays. The presence of these G-repeats rendered translation of reporter constructs dependent on the Grsf1 concentration. Down regulation of either Grsf1 or Use1 abrogated expansion of erythroblasts. The 5′UTR of human Use1 lacks the splice donor site, but contains an additional upstream open reading frame in close proximity of the translation start site. Similar to mouse Use1, also the human 5′UTR contains G-repeats in front of the start codon. In conclusion, Grsf1 controls translation of the SNARE protein Use1, possibly by positioning the 40S ribosomal subunit and associated translation factors in front of the translation start site.  相似文献   

13.
TNF receptor–associated factors (TRAFs) are multifunctional adaptor proteins involved in temporal and spatial coordination of signals necessary for normal immune function. Here, we report that TRAF3, a TRAF family member with a key role in Toll-like and TNF family receptor signaling and suppressor of lymphomagenesis, is post-translationally modified by the small ubiquitin-related modifier (SUMO). Through yeast two-hybrid and co-immunoprecipitation assays we have identified Ubc9, the SUMO conjugating enzyme, as a novel TRAF3-interacting protein. We show that Ubc9-dependent SUMOylation of TRAF3 modulates optimal association with the CD40 receptor, thereby influencing TRAF3 degradation and non-canonical NF-κB activation upon CD40 triggering. Collectively, our findings describe a novel post-translational modification of a TRAF family member and reveal a link between SUMOylation and TRAF-mediated signal transduction.  相似文献   

14.
RHBDL2, a human homolog of the rhomboids, belongs to a unique class of serine intramembrane proteases; little is known about its function and regulation. Here, we show that RHBDL2 is produced as a proenzyme and that the processing of RHBDL2 is required for its cellular protease activity. The processing of RHBDL2 was shown by both Western blot and immunofluorescence analysis. We have demonstrated that a highly conserved Arg residue on loop 1 of RHBDL2 plays a critical role in the activation of the proenzyme. The activation of RHBDL2 is catalyzed by a protease that is sensitive to a class of sulfonamide compounds. Furthermore, endogenous RHBDL2 exists as the processed form and treatment of cells with a sulfonamide inhibitor led to an accumulation of the full length of RHBDL2. Therefore, this study has demonstrated that RHBDL2 activity is regulated by proenzyme activation, revealed a role for the conserved WR residues in loop 1 in RHBDL2 activity, and provided critical insights into the regulation and function of this human rhomboid protease.  相似文献   

15.
16.
The ZAP-70 tyrosine kinase is essential for T cell activation by the T cell receptor. We show that ZAP-70 is also required for migration of T cells that is dependent on the integrin LFA-1. Invasion of TAM2D2 T cell hybridoma cells into fibroblast monolayers, which is LFA-1–dependent, was blocked by overexpression of dominant-negative ZAP-70 and by piceatannol but not by herbimycin A. The Syk inhibitor piceatannol blocks the Syk homologue ZAP-70, which is expressed by TAM2D2 cells, with the same dose dependence as the inhibition of invasion. Dominant-negative ZAP-70 completely inhibited the extensive metastasis formation of TAM2D2 cells to multiple organs upon i.v. injection into mice. Migration of TAM2D2 cells through filters coated with the LFA-1 ligand ICAM-1, induced by 1 ng/ml of the chemokine SDF-1, was blocked by anti–LFA-1 mAb and also abrogated by dominant-negative ZAP-70 and piceatannol. In contrast, migration induced by 100 ng/ml SDF-1 was independent of both LFA-1 and ZAP-70. LFA-1 cross-linking induced tyrosine phosphorylation, which was blocked by dominant-negative ZAP-70 and piceatannol. We conclude that LFA-1 engagement triggers ZAP-70 activity that is essential for LFA-1–dependent migration.  相似文献   

17.
Human phospholipid scramblase 1 (hPLSCR1), a type II integral class membrane protein, is known to mediate bidirectional scrambling of phospholipids in a Ca2+-dependent manner. hPLSCR2, a homolog of hPLSCR1 that lacks N-terminal proline-rich domain (PRD), did not show scramblase activity. We attribute this absence of scramblase activity of hPLSCR2 to the lack of N-terminal PRD. Hence to investigate the above hypothesis, we added the PRD of hPLSCR1 to hPLSCR2 (PRD-hPLSCR2) and checked whether scramblase activity was restored. Functional assays showed that the addition of PRD to hPLSCR2 restored scrambling activity, and deletion of PRD in hPLSCR1 (ΔPRD-hPLSCR1) resulted in a lack of activity. These results suggest that PRD is crucial for the function of the protein. The effects of the PRD deletion in hPLSCR1 and the addition of PRD to hPLSCR2 were characterized using various spectroscopic techniques. Our results clearly showed that hPLSCR1 and PRD-hPLSCR2 showed Ca2+-dependent aggregation and scrambling activity, whereas hPLSCR2 and ΔPRD-hPLSCR1 did not show aggregation and activity. Thus we conclude that scramblases exhibit Ca2+-dependent scrambling activity by aggregation of protein. Our results provide a possible mechanism for phospholipid scrambling mediated by PLSCRs and the importance of PRD in its function and cellular localization.  相似文献   

18.
Rit, a member of the Ras family of GTPases, has been shown to promote cell survival in response to oxidative stress, in part by directing an evolutionarily conserved p38 MAPK-Akt survival cascade. Aberrant Rit signaling has recently been implicated as a driver mutation in human cancer, adding importance to the characterization of critical Rit effector pathways. However, the mechanism by which Rit-p38 signaling regulated Akt activity was unknown. Here, we identify mTORC2 as a critical downstream mediator of Rit-dependent survival signaling in response to reactive oxygen species (ROS) stress. Rit interacts with Sin1 (MAPKAP1), and Rit loss compromises ROS-dependent mTORC2 complex activation, blunting mTORC2-mediated phosphorylation of Akt kinase. Taken together, our findings demonstrate that the p38/mTORC2/Akt signaling cascade mediates Rit-dependent oxidative stress survival. Inhibition of this previously unrecognized cascade should be explored as a potential therapy of Rit-dependent malignancies.  相似文献   

19.
20.
Previously, we characterized Saccharomyces cerevisiae exonuclease 5 (EXO5), which is required for mitochondrial genome maintenance. Here, we identify the human homolog (C1orf176; EXO5) that functions in the repair of nuclear DNA damage. Human EXO5 (hEXO5) contains an iron-sulfur cluster. It is a single-stranded DNA (ssDNA)-specific bidirectional exonuclease with a strong preference for 5′-ends. After loading at an ssDNA end, hEXO5 slides extensively along the ssDNA prior to cutting, hence the designation sliding exonuclease. However, the single-stranded binding protein human replication protein A (hRPA) restricts sliding and enforces a unique, species-specific 5′-directionality onto hEXO5. This specificity is lost with a mutant form of hRPA (hRPA-t11) that fails to interact with hEXO5. hEXO5 localizes to nuclear repair foci in response to DNA damage, and its depletion in human cells leads to an increased sensitivity to DNA-damaging agents, in particular interstrand cross-linking-inducing agents. Depletion of hEXO5 also results in an increase in spontaneous and damage-induced chromosome abnormalities including the frequency of triradial chromosomes, suggesting an additional defect in the resolution of stalled DNA replication forks in hEXO5-depleted cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号