首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 364 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Oomycete genomes have yielded a large number of predicted effector proteins that collectively interfere with plant life in order to create a favourable environment for pathogen infection. Oomycetes secrete effectors that can be active in the host's extracellular environment, for example inhibiting host defence enzymes, or inside host cells where they can interfere with plant processes, in particular suppression of defence. Two classes of effectors are known to be host-translocated: the RXLRs and Crinklers. Many effectors show defence-suppressive activity that is important for pathogen virulence. A striking example is AVR3a of Phytophthora infestans that targets an ubiquitin ligase, the stabilisation of which may prevent host cell death. The quest for other effector targets and mechanisms is in full swing.  相似文献   

12.
13.
14.
15.
Summary Pathogens of plants produce effector proteins necessary for successful parasitism. The effectors enhance pathogen virulence by manipulating signaling in the plant. Plants produce resistance (R) proteins that mediate recognition of specific effectors and respond by initiating plant defenses. In many cases, R-proteins perceive effectors indirectly; virulence signaling initiated by the effector is shunted, via the R-protein, into a resistance response. Therefore, by understanding how effectors manipulate virulence targets we will concurrently gain insight into how this signaling elicits R-protein-mediated defense responses.  相似文献   

16.
病原菌TAL效应子与寄主靶基因相互识别的分子密码   总被引:2,自引:0,他引:2  
黄单胞杆菌属TAL效应子类蛋白作为病原菌的毒性因子或无毒因子,能够与寄主靶基因DNA的启动子进行特异性识别,调控寄主的基因表达,引起致病或抗病反应。TAL效应子类蛋白识别靶基因DNA的模式,是2个氨基酸决定1个核苷酸的识别。这种新型的蛋白质-DNA互作方式有可能在基因治疗、植物抗病基因发掘、广谱抗病基因构建等生物医学工程和农业工程方面得到广泛应用。文中综述了TAL效应子类蛋白的发现及功能,TAL效应子与寄主靶基因识别的专一性及分子密码,并对该分子密码当前的应用现状及前景进行了讨论和展望。  相似文献   

17.
Many bacterial pathogens of plants and animals use a type III secretion system (TTSS) to deliver virulence effector proteins into host cells. Because effectors are heterogeneous in sequence and function, there has not been a systematic way to identify the genes encoding them in pathogen genomes, and our current inventories are probably incomplete. A pre-closure draft sequence of Pseudomonas syringae pv. tomato DC3000, a pathogen of tomato and Arabidopsis, has recently supported five complementary studies which, collectively, identify 36 TTSS-secreted proteins and many more candidate effectors in this strain. These studies demonstrate the advantages of combining experimental and computational approaches, and they yield new insights into TTSS effectors and virulence regulation in P. syringae, potential effector targeting signals in all TTSS-dependent pathogens, and strategies for finding TTSS effectors in other bacteria that have sequenced genomes.  相似文献   

18.
19.
20.
Bacterial pathogens deliver type III effector proteins into the plant cell during infection. On susceptible (r) hosts, type III effectors can contribute to virulence. Some trigger the action of specific disease resistance (R) gene products. The activation of R proteins can occur indirectly via modification of a host target. Thus, at least some type III effectors are recognized at site(s) where they may act as virulence factors. These data indicate that a type III effector's host target might be required for both initiation of R function in resistant plants and pathogen virulence in susceptible plants. In Arabidopsis thaliana, RPM1-interacting protein 4 (RIN4) associates with both the Resistance to Pseudomonas syringae pv maculicola 1 (RPM1) and Resistance to P. syringae 2 (RPS2) disease resistance proteins. RIN4 is posttranslationally modified after delivery of the P. syringae type III effectors AvrRpm1, AvrB, or AvrRpt2 to plant cells. Thus, RIN4 may be a target for virulence functions of these type III effectors. We demonstrate that RIN4 is not the only host target for AvrRpm1 and AvrRpt2 in susceptible plants because its elimination does not diminish their virulence functions. In fact, RIN4 negatively regulates AvrRpt2 virulence function. RIN4 also negatively regulates inappropriate activation of both RPM1 and RPS2. Inappropriate activation of RPS2 is nonspecific disease resistance 1 (NDR1) independent, in contrast with the established requirement for NDR1 during AvrRpt2-dependent RPS2 activation. Thus, RIN4 acts either cooperatively, downstream, or independently of NDR1 to negatively regulate RPS2 in the absence of pathogen. We propose that many P. syringae type III effectors have more than one target in the host cell. We suggest that a limited set of these targets, perhaps only one, are associated with R proteins. Thus, whereas any pathogen virulence factor may have multiple targets, the perturbation of only one is necessary and sufficient for R activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号