首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The invasive ant species Wasmannia auropunctata displays both ecologically dominant and non‐dominant populations within its native range. Three factors could theoretically explain the ecological dominance of some native populations of W. auropunctata: (i) its clonal reproductive system, through demographic and/or adaptive advantages; (ii) its unicolonial social organization, through lower intraspecific and efficient interspecific competition; (iii) the human disturbance of its native range, through the modification of biotic and abiotic environmental conditions. We used microsatellite markers and behavioural tests to uncover the reproductive modes and social organization of dominant and non‐dominant native populations in natural and human‐modified habitats. Microsatellite and mtDNA data indicated that dominant and non‐dominant native populations (supercolonies as determined by aggression tests) of W. auropunctata did not belong to different evolutionary units. We found that the reproductive system and the social organization are neither necessary nor sufficient to explain W. auropunctata ecological dominance. Dominance rather seems to be set off by unknown ecological factors altered by human activities, as all dominant populations were recorded in human‐modified habitats. The clonal reproductive system found in some populations of W. auropunctata may however indirectly contribute to its ecological dominance by allowing the species to expand its environmental niche, through the fixation over time of specific combinations of divergent male and female genotypes. Unicoloniality may rather promote the range expansion of already dominant populations than actually trigger ecological dominance. The W. auropunctata model illustrates the strong impact of human disturbance on species’ ecological features and the adaptive potential of clonal reproductive systems.  相似文献   

2.
Heritable endosymbiotic bacteria associated with insects are ubiquitous and taxonomically diverse. Many of these endosymbionts influence the fitness of their hosts and/or manipulate their host reproduction. Exploiting the effects of endosymbionts on hosts for pest control is a growing research area, but requires knowledge of endosymbionts associated with the target pest population. In this study, we used molecular methods to screen southern Mexico populations of two species of tephritid fruit fly pests, Anastrepha ludens and A. striata, for heritable bacteria. The only heritable endosymbiont found was Wolbachia in A. striata. Based on multilocus sequence typing and phylogenetic analyses, this Wolbachia strain is new and belongs to the Wolbachia supergroup B. Wolbachia strains previously reported in members of the genus Anastrepha in South America belong to supergroup A. We discuss the potential implications for pest control of the presence of a different Wolbachia strain in southern Mexico.  相似文献   

3.
Wolbachia is the most widespread endosymbiotic bacterium that manipulates reproduction of its arthropod hosts to enhance its own spread throughout host populations. Infection with Wolbachia causes complete parthenogenetic reproduction in many Hymenoptera, producing only female offspring. The mechanism of such reproductive manipulation by Wolbachia has been extensively studied. However, the effects of Wolbachia symbiosis on behavioral traits of the hosts are scarcely investigated. The parasitoid wasp Asobara japonica is an ideal insect to investigate this because symbiotic and aposymbiotic strains are available: Wolbachia-infected Tokyo (TK) and noninfected Iriomote (IR) strains originally collected on the main island and southwest islands of Japan, respectively. We compared the oviposition behaviors of the two strains and found that TK strain females parasitized Drosophila melanogaster larvae more actively than the IR strain, especially during the first two days after eclosion. Removing Wolbachia from the TK strain wasps by treatment with tetracycline or rifampicin decreased their parasitism activity to the level of the IR strain. Morphological and behavioral analyses of both strain wasps showed that Wolbachia endosymbionts do not affect development of the host female reproductive tract and eggs, but do enhance host-searching ability of female wasps. These results suggest the possibility that Wolbachia endosymbionts may promote their diffusion and persistence in the host A. japonica population not only at least partly by parthenogenesis but also by enhancement of oviposition frequency of the host females.  相似文献   

4.
Maternally inherited endosymbionts of arthropods are one of the most abundant and diverse group of bacteria. These bacterial endosymbionts also show extensive horizontal transfer to taxonomically unrelated hosts and widespread recombination in their genomes. Such horizontal transfers can be enhanced when different arthropod hosts come in contact like in an ecological community. Higher rates of horizontal transfer can also increase the probability of recombination between endosymbionts, as they now share the same host cytoplasm. However, reports of community‐wide endosymbiont data are rare as most studies choose few host taxa and specific ecological interactions among the hosts. To better understand endosymbiont spread within host populations, we investigated the incidence, diversity, extent of horizontal transfer, and recombination of three endosymbionts (Wolbachia, Cardinium, and Arsenophonus) in a specific soil arthropod community. Wolbachia strains were characterized with MLST genes whereas 16S rRNA gene was used for Cardinium and Arsenophonus. Among 3,509 individual host arthropods, belonging to 390 morphospecies, 12.05% were infected with Wolbachia, 2.82% with Cardinium and 2.05% with Arsenophonus. Phylogenetic incongruence between host and endosymbiont indicated extensive horizontal transfer of endosymbionts within this community. Three cases of recombination between Wolbachia supergroups and eight incidences of within‐supergroup recombination were also found. Statistical tests of similarity indicated supergroup A Wolbachia and Cardinium show a pattern consistent with extensive horizontal transfer within the community but not for supergroup B Wolbachia and Arsenophonus. We highlight the importance of extensive community‐wide studies for a better understanding of the spread of endosymbionts across global arthropod communities.  相似文献   

5.
Facultative bacterial endosymbionts are associated with many arthropods and are primarily transmitted vertically from mother to offspring. However, phylogenetic affiliations suggest that horizontal transmission must also occur. Such horizontal transfer can have important biological and agricultural consequences when endosymbionts increase host fitness. So far horizontal transmission is considered rare and has been difficult to document. Here, we use fluorescence in situ hybridization (FISH) and multi locus sequence typing (MLST) to reveal a potentially common pathway of horizontal transmission of endosymbionts via parasitoids of insects. We illustrate that the mouthparts and ovipositors of an aphelinid parasitoid become contaminated with Wolbachia when this wasp feeds on or probes Wolbachia-infected Bemisia tabaci AsiaII7, and non-lethal probing of uninfected B. tabaci AsiaII7 nymphs by parasitoids carrying Wolbachia resulted in newly and stably infected B. tabaci matrilines. After they were exposed to infected whitefly, the parasitoids were able to transmit Wolbachia efficiently for the following 48 h. Whitefly infected with Wolbachia by parasitoids had increased survival and reduced development times. Overall, our study provides evidence for the horizontal transmission of Wolbachia between insect hosts by parasitic wasps, and the enhanced survival and reproductive abilities of insect hosts may adversely affect biological control programs.  相似文献   

6.
Wolbachia are maternally inherited, cellular endosymbionts that can enhance their fitness by biasing host sex ratio in favour of females. Male killing (MK) is an extreme form of sex-ratio manipulation that is selectively advantageous if the self-sacrifice of Wolbachia in males increases transmission through females. In live-bearing hosts, females typically produce more embryos than can be carried to term, and reproductive compensation through maternal resource reallocation from dead males to female embryos could increase the number of daughters born to infected females. Here, we report a new strain of MK Wolbachia (wCsc2) in the pseudoscorpion, Cordylochernes scorpioides, and present the first empirical evidence that reproductive compensation favours the killing of males in a viviparous host. Females infected with the wCsc2 strain produced 26 per cent more and significantly larger daughters than tetracycline-cured females. In contrast to the previously described wCsc1 MK Wolbachia strain in C. scorpioides, wCsc2 infection was not accompanied by an increase in the rate of spontaneous brood abortion. Characterization of the wCsc1 and wCsc2 strains by multi-locus sequence typing and by Wolbachia surface protein (wsp) gene sequencing indicates that the marked divergence between these two MK strains in their impact on host reproductive success, and hence in their potential to spread, has occurred in association with homologous recombination in the wsp gene.  相似文献   

7.
Bacterial endosymbionts induce various effects on hosts and can dramatically impact host fitness and development. An example is provided by obligate, maternally-inherited Wolbachia, which infect a broad range of invertebrates. Wolbachia are capable of altering host reproduction, thereby promoting infection spread. Wolbachia also pose direct physiological costs and benefits to hosts, complicating their categorization as parasites or mutualists. This study examines for an effect of Wolbachia infection in intra-specific larval competition by Aedes albopictus mosquitoes, with the goal of examining for an impact of Wolbachia infection in mixed populations. Similar to prior work examining for an influence of Wolbachia infection on the fitness of A. albopictus in adults, the results presented here support the hypothesized impact of Wolbachia across all life stages, including immatures. The differential competitiveness of infected larvae detected in our experiments indicates that Wolbachia infected A. albopictus females are less competitive relative to uninfected females when competing under highly competitive conditions. In contrast, under low competitive pressures, infected females experience higher survivorship. Thus, Wolbachia infection shifts from parasitism to mutualism as a function of developmental conditions. Results are discussed in relation to the invasion and persistence of Wolbachia in A. albopictus populations.The results are important to the evolution of stable Wolbachia symbioses, including Wolbachia invasion of an uninfected population. The resulting infection dynamics that occur in an infected population are discussed.  相似文献   

8.
Wolbachia and Cardinium are maternally inherited intracellular bacteria that can manipulate the reproduction of their arthropod hosts, such as by inducing cytoplasmic incompatibility (CI). Although the reproductive alteration induced by Wolbachia or Cardinium have been well investigated, the effects of these two endosymbionts co-infecting the same host are poorly understood. We found that Tetranychus piercei McGregor is naturally infected with Wolbachia and Cardinium. We performed all possible crossing combinations using naturally infected and cured strains, and the results show that Wolbachia induced a weak level of CI, while Cardinium-infected and doubly infected males caused severe CI. Wolbachia and Cardinium could not rescue CI each other; however, Wolbachia boosted the expression of Cardinium-induced CI. Quantitative PCR results demonstrated that CI was associated with the infection density of Wolbachia and Cardinium.  相似文献   

9.
《Journal of Asia》2021,24(3):764-771
Members of the genus Wolbachia are a group of Rickettsia-like, intracellular, maternally inherited bacterial endosymbionts that infect a diverse range of insects and cause reproductive changes in their hosts. Although Wolbachia’s role in many insects has been extensively studied, only a little of their effects on host’s reproduction and their infection frequencies were reported in Lepidopteran which is one of the most diverse insects. Here, we present the first systematic survey of the Wolbachia infection status in different species of moths from three different geographic regions of Thailand, which was carried out during January to December in 2019 with the screening of 1,235 specimens in total of 58 moth species from 13 families. Specimens were collected from Khao Yai National Park (the Central and the Northeast regions), and Kaeng Krachan National Park (the West region). Infections of Wolbachia were screened by using polymerase chain reaction with 16S rRNA, ftsZ and wsp gene primers which the results indicated high rates of Wolbachia infection in moth populations from Thailand. Wolbachia was found in all different geographically populations in total of 625 individuals in total of 28 moth species from 9 families, including 144 individuals (46 males and 98 females) from the Central, 156 individuals (49 males and 107 females) from the Northeast, and 325 individuals (114 males and 211 females) from the West. The highest infection rate was 90.47% in the West populations and the average infection rate was 61.90%. The detection of Wolbachia in different moth populations from all regions was identical when all primers were used to screen for Wolbachia. The relative densities of Wolbachia within each individual were determined using quantitative real-time PCR and the result showed that there was a low Wolbachia infection density in these moth populations. These findings indicated that Wolbachia are distributed throughout the moth populations from Thailand.  相似文献   

10.
Cardinium and Wolbachia are common maternally inherited reproductive parasites that can coinfect arthropods, yet interactions between both bacterial endosymbionts are rarely studied. For the first time, we report their independent expression of complete cytoplasmic incompatibility (CI) in a coinfected host, and CI in a species of the haplodiploid insect order Thysanoptera. In Pezothrips kellyanus, Cardinium‐induced CI resulted in a combination of male development (MD) and embryonic female mortality (FM) of fertilized eggs. In contrast, Wolbachia‐induced CI resulted in FM together with postembryonic mortality not previously reported as a CI outcome. Both endosymbionts appeared to not influence fecundity but virgins produced more offspring than mated females. In coinfected individuals, Wolbachia density was higher than Cardinium. Wolbachia removal did not impact Cardinium density, suggesting a lack of competition within hosts. Maternal transmission was complete for Wolbachia and high for Cardinium. Our data support theoretical predictions and empirical detection of high endosymbiont prevalence in field populations of the native range of this pest thrips. However, previous findings of more frequent loss of Wolbachia than Cardinium, particularly in field populations of the host's invasive range, suggest that genetic diversity or varying environmental factors between field populations also play a role in shaping host‐endosymbiont dynamics.  相似文献   

11.
In many arthropods, maternally inherited endosymbiotic bacteria can increase infection frequency by manipulating host reproduction. Multiple infections of different bacteria in a single host population are common, yet few studies have documented concurrent endosymbiont phenotypes or explored their potential interactions. We hypothesized that spiders might be a particularly useful taxon for investigating endosymbiont interactions, because they are host to a plethora of endosymbiotic bacteria and frequently exhibit multiple infections. We established two matrilines from the same population of the linyphiid spider Mermessus fradeorum and then used antibiotic curing and controlled mating assays to demonstrate that each matriline was subject to a distinct endosymbiotic reproductive manipulation. One matriline was co-infected with Rickettsia and Wolbachia and produced offspring with a radical female bias. Antibiotic treatment eliminated both endosymbionts and restored an even sex ratio to subsequent generations. Chromosomal and fecundity observations suggest a feminization mechanism. In the other matriline, a separate factorial mating assay of cured and infected spiders demonstrated strong cytoplasmic incompatibility (CI) induced by a different strain of Wolbachia. However, males with this Wolbachia induced only mild CI when mated with the RickettsiaWolbachia females. In a subsequent survey of a field population of M. fradeorum, we detected these same three endosymbionts infecting 55% of the spiders in almost all possible combinations, with nearly half of the infected spiders exhibiting multiple infection. Our results suggest that a dynamic network of endosymbionts may interact both within multiply infected hosts and within a population subject to multiple strong reproductive manipulations.  相似文献   

12.
The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system.  相似文献   

13.
Wolbachia is the most widespread bacterial endosymbiont in insects. It is responsible for a variety of reproductive alterations of the hosts. Wolbachia is transmitted through the germline from mother to offspring and, in rare cases, between individuals. This implies that acquired properties (through symbiosis with Wolbachia) can become heritable. We investigated the transovarial inheritance of Wolbachia in two phylogenetically distant insects, Drosophila melanogaster and Zyginidia pullula. We detected in both systems bacteriocyte-like cells, densely packed with Wolbachia endosymbionts, at the tip of the ovarioles. Bacteriocytes are cells specialized to harbour bacteria, typical of mutualistic insect symbiosis. Our observations of bacteriocyte-like cells harbouring Wolbachia in the ovary emphasize the plasticity of the female reproductive system of insects, which maintains its function while some cells are densely colonized by bacteria. In summary, there is evidence from different insects that bacteria which behave as parasites of reproduction are harboured by cells resembling bacteriocytes, which appear to mediate transmission of the bacteria to the progeny. It seems a valid hypothesis that the bacteriocyte-like cells that we observed are not the result of a co-evolution of host and symbiont, considering that Wolbachia is not an obligatory symbiont in Drosophila and Zyginidia.  相似文献   

14.
Although facultative endosymbionts are now known to protect insect hosts against pathogens and parasitoids, the effects of endosymbionts on insecticide resistance are still unclear. Here we show that Wolbachia are associated with increased resistance to the commonly used insecticide, buprofezin, in the small brown planthopper (Laodelphax striatellus) in some genetic backgrounds while having no effect in other backgrounds. In three Wolbachia-infected lines from experimental buprofezin-resistant strains and one line from a buprofezin-susceptible line established from Chuxiong, Yunnan province, China, susceptibility to buprofezin increased after removal of Wolbachia. An increase in susceptibility was also evident in a Wolbachia-infected line established from a field population in Rugao, Jiangsu province. However, no increase was evident in two field populations from Nanjing and Fengxian, Jiangsu province, China. When Wolbachia was introgressed into different genetic backgrounds, followed by Wolbachia removal, the data pointed to Wolbachia effects that depend on the nuclear background as well as on the Wolbachia strain. However, there was no relationship between Wolbachia density and the component of buprofezin resistance associated with the symbiont. The results suggest that Wolbachia effects associated with chemical resistance are complex and unpredictable, but also that they can be substantial.  相似文献   

15.
Ladybirds are a hot-spot for the invasion of male-killing bacteria. These maternally inherited endosymbionts cause the death of male host embryos, to the benefit of female sibling hosts and the bacteria that they contain. Previous studies have shown that high temperatures can eradicate male-killers from ladybirds, leaving the host free from infection. Here we report the discovery of two maternally inherited sex ratio distorters in populations of a coccinellid, Coccinella undecimpunctata, from a hot lowland region of the Middle East. DNA sequence analysis indicates that the male killing is the result of infection by Wolbachia, that the trait is tetracycline sensitive, and that two distinct strains of Wolbachia co-occur within one beetle population. We discuss the implications of these findings for theories of male-killing and suggest avenues for future field-work on this system.  相似文献   

16.
Most insect species are associated with vertically transmitted endosymbionts. Because of the mode of transmission, the fitness of these symbionts is dependent on the fitness of the hosts. Therefore, these endosymbionts need to control their proliferation in order to minimize their cost for the host. The genetic bases and mechanisms of this regulation remain largely undetermined. The maternally inherited bacteria of the genus Wolbachia are the most common endosymbionts of insects, providing some of them with fitness benefits. In Drosophila melanogaster, Wolbachia wMelPop is a unique virulent variant that proliferates massively in the hosts and shortens their lifespan. The genetic bases of wMelPop virulence are unknown, and their identification would allow a better understanding of how Wolbachia levels are regulated. Here we show that amplification of a region containing eight Wolbachia genes, called Octomom, is responsible for wMelPop virulence. Using Drosophila lines selected for carrying Wolbachia with different Octomom copy numbers, we demonstrate that the number of Octomom copies determines Wolbachia titers and the strength of the lethal phenotype. Octomom amplification is unstable, and reversion of copy number to one reverts all the phenotypes. Our results provide a link between genotype and phenotype in Wolbachia and identify a genomic region regulating Wolbachia proliferation. We also prove that these bacteria can evolve rapidly. Rapid evolution by changes in gene copy number may be common in endosymbionts with a high number of mobile elements and other repeated regions. Understanding wMelPop pathogenicity and variability also allows researchers to better control and predict the outcome of releasing mosquitoes transinfected with this variant to block human vector-borne diseases. Our results show that transition from a mutualist to a pathogen may occur because of a single genomic change in the endosymbiont. This implies that there must be constant selection on endosymbionts to control their densities.  相似文献   

17.
Maternally inherited bacterial endosymbionts that affect host fitness are common in nature. Some endosymbionts colonise host populations by reproductive manipulations (such as cytoplasmic incompatibility; CI) that increase the reproductive fitness of infected over uninfected females. Theory predicts that CI-inducing endosymbionts in haplodiploid hosts may also influence sex allocation, including in compatible crosses, however, empirical evidence for this is scarce. We examined the role of two common CI-inducing endosymbionts, Cardinium and Wolbachia, in the sex allocation of Pezothrips kellyanus, a haplodiploid thrips species with a split sex ratio. In this species, irrespective of infection status, some mated females are constrained to produce extremely male-biased broods, whereas other females produce extremely female-biased broods. We analysed brood sex ratio of females mated with males of the same infection status at two temperatures. We found that at 20 °C the frequency of constrained sex allocation in coinfected pairs was reduced by 27% when compared to uninfected pairs. However, at 25 °C the constrained sex allocation frequency increased and became similar between coinfected and uninfected pairs, resulting in more male-biased population sex ratios at the higher temperature. This temperature-dependent pattern occurred without changes in endosymbiont densities and compatibility. Our findings indicate that endosymbionts affect sex ratios of haplodiploid hosts beyond the commonly recognised reproductive manipulations by causing female-biased sex allocation in a temperature-dependent fashion. This may contribute to a higher transmission efficiency of CI-inducing endosymbionts and is consistent with previous models that predict that CI by itself is less efficient in driving endosymbiont invasions in haplodiploid hosts.Subject terms: Evolutionary genetics, Evolutionary ecology, Parasitology  相似文献   

18.
J Xie  S Butler  G Sanchez  M Mateos 《Heredity》2014,112(4):399-408
Maternally transmitted associations between endosymbiotic bacteria and insects are diverse and widespread in nature. Owing to imperfect vertical transmission, many heritable microbes have evolved compensational mechanisms to enhance their persistence in host lineages, such as manipulating host reproduction and conferring fitness benefits to host. Symbiont-mediated defense against natural enemies of hosts is increasingly recognized as an important mechanism by which endosymbionts enhance host fitness. Members of the genus Spiroplasma associated with distantly related Drosophila hosts are known to engage in either reproductive parasitism (i.e., male killing) or defense against natural enemies (the parasitic wasp Leptopilina heterotoma and a nematode). A male-killing strain of Spiroplasma (strain Melanogaster Sex Ratio Organism (MSRO)) co-occurs with Wolbachia (strain wMel) in certain wild populations of the model organism Drosophila melanogaster. We examined the effects of Spiroplasma MSRO and Wolbachia wMel on Drosophila survival against parasitism by two common wasps, Leptopilina heterotoma and Leptopilina boulardi, that differ in their host ranges and host evasion strategies. The results indicate that Spiroplasma MSRO prevents successful development of both wasps, and confers a small, albeit significant, increase in larva-to-adult survival of flies subjected to wasp attacks. We modeled the conditions under which defense can contribute to Spiroplasma persistence. Wolbachia also confers a weak, but significant, survival advantage to flies attacked by L. heterotoma. The host protective effects exhibited by Spiroplasma and Wolbachia are additive and may provide the conditions for such cotransmitted symbionts to become mutualists. Occurrence of Spiroplasma-mediated protection against distinct parasitoids in divergent Drosophila hosts suggests a general protection mechanism.  相似文献   

19.
Parthenogenesis-inducing (PI) Wolbachia belong to a class of intracellular symbionts that distort the offspring sex ratio of their hosts toward a female bias. In many PI Wolbachia-infected species sex ratio distortion has reached its ultimate expression-fixation of infection and all-female populations. This is only possible with thelytokous PI symbionts as they provide an alternative form of reproduction and remove the requirement for males and sexual reproduction. Many populations fixed for PI Wolbachia infection have lost the ability to reproduce sexually, even when cured of the infection. We examine one such population in the species Trichogramma pretiosum. Through a series of backcrossing experiments with an uninfected Trichogramma pretiosum population we were able to show that the genetic basis for the loss of female sexual function could be explained by a dominant nuclear effect. Male sexual function had not been completely lost, though some deterioration of male sexual function was also evident when males from the infected population (created through antibiotic curing of infected females) were mated to uninfected females. We discuss the dynamics of sex ratio selection in PI Wolbachia-infected populations and the evolution of non-fertilizing mutations.  相似文献   

20.
Wolbachia are intracellular prokaryotic endosymbionts associated with a wide distribution of arthropod and nematode hosts. Their association ranges from parasitism to mutualism, and there is growing evidence that Wolbachia can have dramatic effects on host reproduction, physiology, and immunity. Although all Wolbachia are currently considered as single species, W. pipientis, phylogenetic studies reveal about a dozen monophyletic groups, each designated as a supergroup. This study uses 16S rRNA gene sequences to examine the genetic diversity of Wolbachia present in three species of Great Salt Lake brine flies, Cirrula hians, Ephydra gracilis, and Mosillus bidentatus. The brine fly Wolbachia sequences are highly similar, with an average nucleotide sequence divergence among the three species of 0.00174. The brine fly Wolbachia form a monophyletic group that is affiliated with a subset of supergroup B, indicating that this supergroup may be more diverse than previously thought. These findings expand the phylogenetic diversity of Wolbachia and extend their host range to taxa adapted to a hypersaline environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号