首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diastolic Ca leak from the sarcoplasmic reticulum (SR) of ventricular myocytes reduces the SR Ca content, stabilizing the activity of the SR Ca release channel ryanodine receptor for the next beat. SR Ca leak has been visualized globally using whole-cell fluorescence, or locally using confocal microscopy, but never both ways. When using confocal microscopy, leak is imaged as “Ca sparks,” which are fluorescent objects generated by the local reaction-diffusion of released Ca and cytosolic indicator. Here, we used confocal microscopy and simultaneously measured the global ryanodine-receptor-mediated leak rate (Jleak) and Ca sparks in intact mouse ventricular myocytes. We found that spark frequency and Jleak are correlated, as expected if both are manifestations of a common phenomenon. However, we also found that sparks explain approximately half of Jleak. Our strategy unmasks the presence of a subresolution (i.e., nonspark) release of potential physiological relevance.  相似文献   

2.
3.
Nuclear magnetic resonance (NMR) microimaging and proton relaxation times were used to monitor differences between the hydration state of the nucleus and cytoplasm in the Rana pipiens oocyte. Individual isolated ovarian oocytes were imaged in a drop of Ringer's solution with an in-plane resolution of 80 μm. Proton spin echo images of oocytes arrested in prophase I indicated a marked difference in contrast between nucleoplasm and cytoplasm with additional intensity gradations between the yolk platelet-rich region of the cytoplasm and regions with little yolk. Neither shortening τe (spin echo time) to 9 msec (from 18 msec) nor lengthening τr (spin recovery time) to 2 sec (from 0.5 sec) reduced the observed contrast between nucleus and cytoplasm. Water proton T1 (spin-lattice) relaxation times of oocyte suspensions indicated three water compartments that corresponded to extracellular medium (T1= 3.0 sec), cytoplasm (T1= 0.8 sec) and nucleoplasm (T1= 1.6 sec). The 1.6 sec compartment disappeared at the time of nuclear breakdown. Measurements of plasma and nuclear membrane potentials with KCl-filled glass microelectrodes demonstrated that the prophase I oocyte nucleus was about 25 mV inside positive relative to the extracellular medium. A model for the prophase-arrested oocyte is proposed in which a high concentration of large impermeant ions together with small counter ions set up a Donnan-type equilibrium that results in an increased distribution of water within the nucleus in comparison with the cytosol. This study indicates: (i) a slow exchange between two or more intracellular water compartments on the NMR time-scale, (ii) an increased rotational correlation time for water molecules in both the cytoplasmic and nuclear compartments compared to bulk water, and (iii) a higher water content (per unit dry mass) of the nucleus compared to the cytoplasm, and (iv) the existence of a large (about 75 mV positive) electropotential difference between the nuclear and cytoplasmic compartments. Received: 18 January 1996/Revised: 29 April 1996  相似文献   

4.
Electroporation induced by high-strength electrical fields has long been used to investigate membrane properties and facilitate transmembrane delivery of molecules and genes for research and clinical purposes. In the heart, electric field-induced passage of ions through electropores is a factor in defibrillation and postshock dysfunction. Voltage-clamp pulses can also induce electroporation, as exemplified by findings in earlier studies on rabbit ventricular myocytes: Long hyperpolarizations to ≤-110?mV induced influx of marker ethidium and irregular inward currents that were as large with external NMDG(+) as Na(+). In the present study, guinea pig ventricular myocytes were bathed with NMDG(+), Na(+) or NMDG(+)?+?La(3+) solution (36°C) and treated with five channel blockers. Hyperpolarization of myocytes in NMDG(+) solution elicited an irregular inward current (I (ep)) that reversed at -21.5?±?1.5?mV. In myocytes hyperpolarized with 200-ms steps every 30?s, I (ep) occurred in "episodes" that lasted for one to four steps. Boltzmann fits to data on the incidence of I (ep) per experiment indicate 50% incidence at -129.7?±?1.4?mV (Na(+)) and -146.3?±?1.6?mV (NMDG(+)) (slopes ≈-7.5?mV). I (ep) amplitude increased with negative voltage and was larger with Na(+) than NMDG(+) (e.g., -2.83?±?0.34 vs. -1.40?±?0.22?nA at -190?mV). La(3+) (0.2?mM) shortened episodes, shifted 50% incidence by -35?mV and decreased amplitude, suggesting that it inhibits opening/promotes closing of electropores. We compare our findings with earlier ones, especially in regard to electropore selectivity. In the Appendix, relative permeabilities and modified excluded-area theory are used to derive estimates of electropore diameters consistent with reversal potential -21.5?mV.  相似文献   

5.
6.
UV irradiation has multiple effects on mammalian cells, including modification of ion channel function. The present study was undertaken to investigate the response of membrane currents in guinea-pig ventricular myocytes to the type A (355, 380 nm) irradiation commonly used in Ca2+ imaging studies. Myocytes configured for whole-cell voltage clamp were generally held at −80 mV, dialyzed with K+-, Na+-free pipette solution, and bathed with K+-free Tyrode’s solution at 22°C. During experiments that lasted for ≈ 35 min, UVA irradiation caused a progressive increase in slowly-inactivating inward current elicited by 200-ms depolarizations from −80 to −40 mV, but had little effect on background current or on L-type Ca2+ current. Trials with depolarized holding potential, Ca2+ channel blockers, and tetrodotoxin (TTX) established that the current induced by irradiation was late (slowly-inactivating) Na+ current (INa). The amplitude of the late inward current sensitive to 100 μM TTX was increased by 3.5-fold after 20–30 min of irradiation. UVA modulation of late INa may (i) interfere with imaging studies, and (ii) provide a paradigm for investigation of intracellular factors likely to influence slow inactivation of cardiac INa.  相似文献   

7.
Our mathematical model of the rat ventricular myocyte (Pandit et al., 2001) was utilized to explore the ionic mechanism(s) that underlie the altered electrophysiological characteristics associated with the short-term model of streptozotocin-induced, type-I diabetes. The simulations show that the observed reductions in the Ca2+-independent transient outward K+ current (It) and the steady-state outward K+ current (Iss), along with slowed inactivation of the L-type Ca2+ current (ICaL), can result in the prolongation of the action potential duration, a well-known experimental finding. In addition, the model demonstrates that the slowed reactivation kinetics of It in diabetic myocytes can account for the more pronounced rate-dependent action potential duration prolongation in diabetes, and that a decrease in the electrogenic Na+-K+ pump current (INaK) results in a small depolarization in the resting membrane potential (Vrest). This depolarization reduces the availability of the Na+ channels (INa), thereby resulting in a slower upstroke (dV/dtmax) of the diabetic action potential. Additional simulations suggest that a reduction in the magnitude of ICaL, in combination with impaired sarcoplasmic reticulum uptake can lead to a decreased sarcoplasmic reticulum Ca2+ load. These factors contribute to characteristic abnormal [Ca2+]i homeostasis (reduced peak systolic value and rate of decay) in myocytes from diabetic animals. In combination, these simulation results provide novel information and integrative insights concerning plausible ionic mechanisms for the observed changes in cardiac repolarization and excitation-contraction coupling in rat ventricular myocytes in the setting of streptozotocin-induced, type-I diabetes.  相似文献   

8.
植入电子起搏器可以治疗因窦房结功能失常引起的猝死等心脏疾病.但是,电子起搏器存在很多弊端,比如电池寿命有限、容易感染等.因此,生物起搏器被期待能够取代电子起搏器.为了探讨在心室内诱导心室细胞生成生物起搏器的可行性,我们首先抑制内向整流钾电流(I_(K1)),使心室肌细胞产生起搏行为,然后基于理想心室组织和真实人体心室切片数据,构建2D生物起搏器模型.基于该模型,我们研究细胞间的电偶联和起搏电流I_f对起搏器功能的影响.发现起搏电流I_f对起搏器功能有增强作用,但细胞间的弱电偶联对起搏器的起搏有更为关键的影响.  相似文献   

9.
Mechanosensitive channels may have a significant role in the development of cardiac arrhythmia following infarction, but the data on mechanical responses at the cellular level are limited. Mechanosensitivity is a ubiquitous property of cells, and although the structure of bacteriological mechanosensitive ion channels is becoming known by cloning, the structure and force transduction pathway in eukaryotes remains elusive. Isolated adult rat ventricular myocytes were voltage clamped and stimulated with a mechanical probe. The probe was set in sinusoidal motion (either in, or normal to, the plane of the cell membrane), and then slowly lowered onto the cell. The sinusoidal frequency was held constant at 1 Hz but the stimulation amplitude was increased and the probe gradually lowered until a mechanically sensitive whole cell current was seen, which usually followed several minutes of stimulation. The whole cell mechanosensitive current in rat cells had two components: (i) a brief large inward current spike current; (ii) a more sustained smaller inward current. The presence of the initial sharp inward current suggests that some structure within the cell either relaxes or is broken, exposing the mechanosensitive element(s) to stress. Metabolic changes induced by continued stress prior to the mechanosensitive response may weaken the elements that break producing the spike, or simple stress-induced fracture of the cytoskeleton itself may occur.  相似文献   

10.
We measured intracellular Mg2+ concentration ([Mg2+]i) in rat ventricular myocytes using the fluorescent indicator furaptra (25°C). In normally energized cells loaded with Mg2+, the introduction of extracellular Na+ induced a rapid decrease in [Mg2+]i: the initial rate of decrease in [Mg2+]i (initial Δ[Mg2+]it) is thought to represent the rate of Na+-dependent Mg2+ efflux (putative Na+/Mg2+ exchange). To determine whether Mg2+ efflux depends directly on energy derived from cellular metabolism, in addition to the transmembrane Na+ gradient, we estimated the initial Δ[Mg2+]it after metabolic inhibition. In the absence of extracellular Na+ and Ca2+, treatment of the cells with 1 μM carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, an uncoupler of mitochondria, caused a large increase in [Mg2+]i from ∼0.9 mM to ∼2.5 mM in a period of 5-8 min (probably because of breakdown of MgATP and release of Mg2+) and cell shortening to ∼50% of the initial length (probably because of formation of rigor cross-bridges). Similar increases in [Mg2+]i and cell shortening were observed after application of 5 mM potassium cyanide (KCN) (an inhibitor of respiration) for ≥90 min. The initial Δ[Mg2+]it was diminished, on average, by 90% in carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone-treated cells and 92% in KCN-treated cells. When the cells were treated with 5 mM KCN for shorter times (59-85 min), a significant decrease in the initial Δ[Mg2+]it (on average by 59%) was observed with only a slight shortening of the cell length. Intracellular Na+ concentration ([Na+]i) estimated with a Na+ indicator sodium-binding benzofuran isophthalate was, on average, 5.0-10.5 mM during the time required for the initial Δ[Mg2+]it measurements, which is well below the [Na+]i level for half inhibition of the Mg2+ efflux (∼40 mM). Normalization of intracellular pH using 10 μM nigericin, a H+ ionophore, did not reverse the inhibition of the Mg2+ efflux. From these results, it seems likely that a decrease in ATP below the threshold of rigor cross-bridge formation (∼0.4 mM estimated indirectly in the this study), rather than elevation of [Na+]i or intracellular acidosis, inhibits the Mg2+ efflux, suggesting the absolute necessity of ATP for the Na+/Mg2+ exchange.  相似文献   

11.
The cardiac Ca2+ release channel (ryanodine receptor, RyR2) plays an essential role in excitation-contraction coupling in cardiac muscle cells. Effective and stable excitation-contraction coupling critically depends not only on the expression of RyR2, but also on its distribution. Despite its importance, little is known about the distribution and organization of RyR2 in living cells. To study the distribution of RyR2 in living cardiomyocytes, we generated a knock-in mouse model expressing a GFP-tagged RyR2 (GFP-RyR2). Confocal imaging of live ventricular myocytes isolated from the GFP-RyR2 mouse heart revealed clusters of GFP-RyR2 organized in rows with a striated pattern. Similar organization of GFP-RyR2 clusters was observed in fixed ventricular myocytes. Immunofluorescence staining with the anti-α-actinin antibody (a z-line marker) showed that nearly all GFP-RyR2 clusters were localized in the z-line zone. There were small regions with dislocated GFP-RyR2 clusters. Interestingly, these same regions also displayed dislocated z-lines. Staining with di-8-ANEPPS revealed that nearly all GFP-RyR2 clusters were co-localized with transverse but not longitudinal tubules, whereas staining with MitoTracker Red showed that GFP-RyR2 clusters were not co-localized with mitochondria in live ventricular myocytes. We also found GFP-RyR2 clusters interspersed between z-lines only at the periphery of live ventricular myocytes. Simultaneous detection of GFP-RyR2 clusters and Ca2+ sparks showed that Ca2+ sparks originated exclusively from RyR2 clusters. Ca2+ sparks from RyR2 clusters induced no detectable changes in mitochondrial Ca2+ level. These results reveal, for the first time, the distribution of RyR2 clusters and its functional correlation in living ventricular myocytes.  相似文献   

12.
目的:从电生理角度探讨葛根素抗心律失常的可能机制。方法:采用膜片钳技术记录大鼠心室肌细胞动作电位(AP)、转染的人胚胎肾细胞缓慢延迟整流钾电流(IKs),观察加药前、后葛根素对AP和IKs的影响。结果:0.01、0.1、1 mmol/L葛根素可浓度依赖性地延长动作电位时程,分别使APD50从(71.8±11.8)ms延长至(86.9±10.7)ms、(100.5±14.1)ms和(123.6±25.4)ms;使APD90从(164.6±21.4)ms延长至(188.3±11.5)ms、(221.6±25.7)ms和(278.7±38.2)ms(n=6,均P0.05),而对RMP、APA和APD20无显著影响。此外,0.01、0.1、1 mmol/L葛根素对IKs抑制率分别为(17.8±2.5)%、(40.4±1.9)%和(60.9±3.2)%(n=6,均P0.05)。结论:葛根素可能通过抑制IKs来延长动作电位时程,发挥抗心律失常作用。  相似文献   

13.
14.
Cardiac ryanodine receptors (RyR2s) are Ca2+ release channels clustering in the sarcoplasmic reticulum membrane. These clusters are believed to be the elementary units of Ca2+ release. The distribution of these Ca2+ release units plays a critical role in determining the spatio-temporal profile and stability of sarcoplasmic reticulum Ca2+ release. RyR2 clusters located in the interior of cardiomyocytes are arranged in highly ordered arrays. However, little is known about the distribution and function of RyR2 clusters in the periphery of cardiomyocytes. Here, we used a knock-in mouse model expressing a green fluorescence protein (GFP)-tagged RyR2 to localize RyR2 clusters in live ventricular myocytes by virtue of their GFP fluorescence. Confocal imaging and total internal reflection fluorescence microscopy was employed to determine and compare the distribution of GFP-RyR2 in the interior and periphery of isolated live ventricular myocytes and in intact hearts. We found tightly ordered arrays of GFP-RyR2 clusters in the interior, as previously described. In contrast, irregular distribution of GFP-RyR2 clusters was observed in the periphery. Time-lapse total internal reflection fluorescence imaging revealed dynamic movements of GFP-RyR2 clusters in the periphery, which were affected by external Ca2+ and RyR2 activator (caffeine) and inhibitor (tetracaine), but little detectable movement of GFP-RyR2 clusters in the interior. Furthermore, simultaneous Ca2+- and GFP-imaging demonstrated that peripheral RyR2 clusters with an irregular distribution pattern are functional with a Ca2+ release profile similar to that in the interior. These results indicate that the distribution of RyR2 clusters in the periphery of live ventricular myocytes is irregular and dynamic, which is different from that of RyR2 clusters in the interior.  相似文献   

15.
Of the many ongoing controversies regarding the workings of the sarcoplasmic reticulum (SR) in cardiac myocytes, two unresolved and interconnected topics are 1), mechanisms of calcium (Ca2+) wave propagation, and 2), speed of Ca2+ diffusion within the SR. Ca2+ waves are initiated when a spontaneous local SR Ca2+ release event triggers additional release from neighboring clusters of SR release channels (ryanodine receptors (RyRs)). A lack of consensus regarding the effective Ca2+ diffusion constant in the SR (DCa,SR) severely complicates our understanding of whether dynamic local changes in SR [Ca2+] can influence wave propagation. To address this problem, we have implemented a computational model of cytosolic and SR [Ca2+] during Ca2+ waves. Simulations have investigated how dynamic local changes in SR [Ca2+] are influenced by 1), DCa,SR; 2), the distance between RyR clusters; 3), partial inhibition or stimulation of SR Ca2+ pumps; 4), SR Ca2+ pump dependence on cytosolic [Ca2+]; and 5), the rate of transfer between network and junctional SR. Of these factors, DCa,SR is the primary determinant of how release from one RyR cluster alters SR [Ca2+] in nearby regions. Specifically, our results show that local increases in SR [Ca2+] ahead of the wave can potentially facilitate Ca2+ wave propagation, but only if SR diffusion is relatively slow. These simulations help to delineate what changes in [Ca2+] are possible during SR Ca2+release, and they broaden our understanding of the regulatory role played by dynamic changes in [Ca2+]SR.  相似文献   

16.
Ryanodine receptors (RyRs) are located primarily on the junctional sarcoplasmic reticulum (SR), adjacent to the transverse tubules and on the cell surface near the Z-lines, but some RyRs are on junctional SR adjacent to axial tubules. Neither the size of the axial junctions nor the numbers of RyRs that they contain have been determined. RyRs may also be located on the corbular SR and on the free or network SR. Because determining and quantifying the distribution of RyRs is critical for both understanding and modeling calcium dynamics, we investigated the distribution of RyRs in healthy adult rat ventricular myocytes, using electron microscopy, electron tomography, and immunofluorescence. We found RyRs in only three regions: in couplons on the surface and on transverse tubules, both of which are near the Z-line, and in junctions on most of the axial tubules—axial junctions. The axial junctions averaged 510 nm in length, but they occasionally spanned an entire sarcomere. Numerical analysis showed that they contain as much as 19% of a cell's RyRs. Tomographic analysis confirmed the axial junction's architecture, which is indistinguishable from junctions on transverse tubules or on the surface, and revealed a complexly structured tubule whose lumen was only 26 nm at its narrowest point. RyRs on axial junctions colocalize with Cav1.2, suggesting that they play a role in excitation-contraction coupling.  相似文献   

17.
18.
Sleep has a specific physiology with related cardiovascular changes. We have previously found in respiratory patients [chronic obstructive pulmonary disease (COPD) and sleep apnea syndrome (OSAS)] an unexpected decrease in left ventricular ejection fraction (LVEF) at waking in the morning when compared with the rest period during the day. Whether this observation was linked to the consequences of the respiratory abnormalities or reflected physiological fluctuations related to the changes in autonomic nervous system tone remained unknown. Thus, we have set out to analyze the changes in LVEF with sleep in normal individuals. Eight healthy young men had LVEF measured before and after submaximal exercise, at rest before bedtime, and on waking in the morning. Technetium-99m with in vivo red cell labelling was used. Sleep parameters were assessed using classical polysomnography. In order to detect any influence of autonomic nervous system stimulation on LVEF, sympathovagal tone (SVT) was also assessed during night-time LVEF measurements using spectral analysis of RR intervals. LVEF at rest was within the normal limits for all the subjects (range 51-62%). On submaximal exercise, the LVEF increased in four subjects, was unchanged in two, and decreased in two. The main result concerns the changes in LVEF overnight. In the morning, LVEF decreased dramatically in three subjects and reached a level of <30% in four. These decreases in LVEF were not related to changes in SVT or sleep structure. LVEF values returned to normal in 30 min. The LVEF changes during exercise are in accordance with previous data in the literature. The dramatic decrease in LVEF observed in the morning could be related either to vascular resistance changes or to nocturnal variations in cardiac contractility, which both need further studies to be established.  相似文献   

19.
Large (111 +/- 3.0 pS) K+ channels were recorded in membrane patches from adult rat ventricular myocytes using patch-clamp techniques. The channels were not blocked by 4-AP (5 mM), intracellular TEA (5 mM) or glybenclamide (100 mM). Applying stretch to the membrane (as pipette suction) increased channel open probability (Po) in both cell-attached and isolated patches (typically, Po approximately equals 0.005 with no pressure; approximately equals 0.328 with 90 cm H2O: Vm = 40 mV, pHi = 7.2). The channels were activated by a decrease in intracellular pH; decreasing pHi to 5.5 from 7.2 increased Po to 0.16 from approx. 0.005 (no suction, Vm held at 40 mV). These properties are consistent with those demonstrated for TREK-1, a member of the recently cloned tandem pore family. We confirmed, using RT-PCR, that TREK-1 is expressed in rat ventricle, suggesting that the channel being recorded is indeed TREK-1. However, we show also that the channels are activated by millimolar concentrations of intracellular ATP. At a pH of 6 with no ATP at the intracellular membrane face, Po was 0.048 +/-0.023, whereas Po increased to 0.22 +/- 0.1 with 1 mM ATP, and to 0.348 +/- 0.13 with 3 mM (n = 5; no membrane stretch applied). The rapid time course of the response and the fact that we see the effect in isolated patches appear to preclude phosphorylation. We conclude that intracellular ATP directly activates TREK-like channels, a property not previously described.  相似文献   

20.
Studies with electron microscopy have shown that sarcoplasmic reticulum (SR) andmitochondria locate close to each other in cardiac muscle cells. We investigated the hypothesis thatthis proximity results in a transient exposure of mitochondrial Ca2+ uniporter (CaUP) to highconcentrations of Ca2+ following Ca2+ release from the SR and thus an influx of Ca2+into mitochondria. Single ventricular myocytes of rat were skinned by exposing them to aphysiological solution containing saponin (0.2 mg/ml). Cytosolic Ca2+ concentration ([Ca2+]c)and mitochondrial Ca2+ concentration ([Ca2+]m) were measured with fura-2 and rhod2,respectively. Application of caffeine (10 mM) induced a concomitant increase in[Ca2+]c and [Ca2+]m.Ruthenium red, at concentrations that block CaUP but not SR release, diminished thecaffeine-induced increase in [Ca2+]m but not[Ca2+]c. In the presence of 1 mM BAPTA, a Ca2+ chelator,the caffeine-induced increase in [Ca2+]m was reduced substantially less than [Ca2+]c. Moreover,inhibition of SR Ca2+ pump with two different concentrations of thapsigargin caused anincrease in [Ca2+]m, which was related to the rate of [Ca2+]c increase. Finally, electronmicroscopy showed that sites of junctions between SR and T tubules from which Ca2+ is released,or Ca2+ release units, CRUs, are preferentially located in close proximity to mitochondria.The distance between individual SR Ca2+ release channels (feet or ryanodine receptors) isvery short, ranging between approximately 37 and 270 nm. These results are consistent withthe idea that there is a preferential coupling of Ca2+ transport from SR to mitochondria incardiac muscle cells, because of their structural proximity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号