首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured myocyte transplantation into an infarcted myocardium has been shown to improve contractile function. Cryopreservation of cultured muscle cells or heart tissue will be important for the technology to be practical. This study, using fetal cardiomyocytes, evaluated the optimal conditions for muscle cell cryopreservation. Study 1: Fetal rat cardiomyocytes were isolated and cultured. The freshly isolated and passage 1, 2, 3 and 4 cells were cryopreserved in a solution containing 70% IMDM, 20% FBS and 10% DMSO and stored in –196°C for 1, 2, 4, 8, 12 and 24 weeks. The cells were thawed and cultured. Cell number and contractility were evaluated at 0, 2, 4, 6, 8 and 10 days of culture. Study 2: Rat myocardium was cryopreserved in sizes of 0.2, 2 and 6 mm3 for 1 week. The tissue was thawed and cells were isolated. Cell growth and contractility were evaluated. (1) Cardiomyocytes grew and contracted after cryopreservation. Storage time did not affect cell survival rate, beating cell numbers and beating rates. Increasing cell passage prior to cryopreservation decreased the percentage of beating cells. (2) Cells isolated from cryopreserved tissue grew in vitro and contracted normally. Cell yield decreased with increased cryopreserved tissue size. Fetal rat cardiomyocytes survived and functioned after in vitro cryopreservation. Viable cells can be isolated from cryopreserved myocardium and cultured. Cryopreservation of small pieces of myocardium is preferred for maximal cell yields.  相似文献   

2.
The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) reduction assay is a frequently used and easily reproducible method to measure beta-amyloid (Aβ) toxicity in different types of single cell culture. To our knowledge, the influence of Aβ on MTT reduction has never been tested in more complex tissue. Initially, we reproduced the disturbed MTT reduction in neuron and astroglia primary cell cultures from rats as well as in the BV2 microglia cell line, utilizing four different Aβ species, namely freshly dissolved Aβ (25-35), fibrillar Aβ (1-40), oligomeric Aβ (1-42) and oligomeric Aβ (1-40). In contrast to the findings in single cell cultures, none of these Aβ species altered MTT reduction in rat organotypic hippocampal slice cultures (OHC). Moreover, application of Aβ to acutely isolated hippocampal slices from adult rats and in vivo intracerebroventricular injection of Aβ also did not influence the MTT reduction in the respective tissue. Failure of Aβ penetration into the tissue cannot explain the differences between single cells and the more complex brain tissue. Thus electrophysiological investigations disclosed an impairment of long-term potentiation (LTP) in the CA1 region of hippocampal slices from rat by application of oligomeric Aβ (1-40), but not by freshly dissolved Aβ (25-35) or fibrillar Aβ (1-40). In conclusion, the experiments revealed a glaring discrepancy between single cell cultures and complex brain tissue regarding the effect of different Aβ species on MTT reduction. Particularly, the differential effect of oligomeric versus other Aβ forms on LTP was not reflected in the MTT reduction assay. This may indicate that the Aβ oligomer effect on synaptic function reflected by LTP impairment precedes changes in formazane formation rate or that cells embedded in a more natural environment in the tissue are less susceptible to damage by Aβ, raising cautions against the consideration of single cell MTT reduction activity as a reliable assay in Alzheimer''s drug discovery studies.  相似文献   

3.

Background

An action potential duration (APD) restitution curve with a steep slope ≥1 has been associated with increased susceptibility for malignant ventricular arrhythmias. We aimed to evaluate the “restitution hypothesis” and tested ventricular APD restitution slope as well as effective refractory period (ERP)/APD ratio for long-term prognostic value in patients with ischemic (ICM) or dilated cardiomyopathy (DCM).

Methodology/Principal Findings

Monophasic action potentials were recorded in patients with ICM (n = 32) and DCM (n = 42) undergoing routine programmed ventricular stimulation (PVS). Left ventricular ejection fraction was 32±7% and 28±9%, respectively. APD and ERP were measured at baseline stimulation (S1) and upon introduction of one to three extrastimuli (S2–S4). ERP/APD ratios and the APD restitution curve were calculated and the maximum restitution slope was determined. After a mean follow-up of 6.1±3.0 years, the combined end-point of mortality and and/or implantable cardioverter-defibrillator shock was not predicted by restitution slope or ERP/APD ratios. Comparing S2 vs. S3 vs. S4 extrastimuli for restitution slope (1.5±0.6 vs. 1.4±0.4 vs. 1.3±0.5; p = NS), additional extrastimuli did not lead to a steepening restitution slope. ERP/APD ratio decreased with additional extrastimuli (0.98±0.09 [S1] vs. 0.97±0.10 [S2] vs. 0.93±0.11 [S3]; p = 0.03 S1 vs. S3). Positive PVS was strongly predictive of outcome (p = 0.006).

Conclusions/Significance

Neither ventricular APD restitution slope nor ERP/APD ratios predict outcome in patients with ICM or DCM.  相似文献   

4.
The zebrafish is increasingly used for cardiovascular genetic and functional studies. We present a novel protocol to maintain and monitor whole isolated beating adult zebrafish hearts in culture for long-term experiments. Excised whole adult zebrafish hearts were transferred directly into culture dishes containing optimized L-15 Leibovitz growth medium and maintained for 5 days. Hearts were assessed daily using video-edge analysis of ventricle function using low power microscopy images. High-throughput histology techniques were used to assess changes in myocardial architecture and cell viability. Mean spontaneous Heart rate (HR, min−1) declined significantly between day 0 and day 1 in culture (96.7±19.5 to 45.2±8.2 min−1, mean±SD, p = 0.001), and thereafter declined more slowly to 27.6±7.2 min−1 on day 5. Ventricle wall motion amplitude (WMA) did not change until day 4 in culture (day 0, 46.7±13.0 µm vs day 4, 16.9±1.9 µm, p = 0.08). Contraction velocity (CV) declined between day 0 and day 3 (35.6±14.8 vs 15.2±5.3 µms−1, respectively, p = 0.012) while relaxation velocity (RV) declined quite rapidly (day 0, 72.5±11.9 vs day 1, 29.5±5.8 µms−1, p = 0.03). HR and WMA responded consistently to isoproterenol from day 0 to day 5 in culture while CV and RV showed less consistent responses to beta-agonist. Cellular architecture and cross-striation pattern of cardiomyocytes remained unchanged up to day 3 in culture and thereafter showed significant deterioration with loss of striation pattern, pyknotic nuclei and cell swelling. Apoptotic markers within the myocardium became increasingly frequent by day 3 in culture. Whole adult zebrafish hearts can be maintained in culture-medium for up to 3 days. However, after day-3 there is significant deterioration in ventricle function and heart rate accompanied by significant histological changes consistent with cell death and loss of cardiomyocyte cell integrity. Further studies are needed to assess whether this preparation can be optimised for longer term survival.  相似文献   

5.

Background

Prolongation of action potential duration (APD), increased spatial APD dispersion, and triangulation are major factors promoting drug-induced ventricular arrhythmia. Preclinical identification of HERG/IKr-blocking drugs and their pro-arrhythmic potential, however, remains a challenge. We hypothesize that transgenic long-QT type 1 (LQT1) rabbits lacking repolarizing IKs current may help to sensitively detect HERG/IKr-blocking properties of drugs.

Methods

Hearts of adult female transgenic LQT1 and wild type littermate control (LMC) rabbits were Langendorff-perfused with increasing concentrations of HERG/IKr-blockers E-4031 (0.001–0.1 µM, n = 9/7) or erythromycin (1–300 µM, n = 9/7) and APD, APD dispersion, and triangulation were analyzed.

Results

At baseline, APD was longer in LQT1 than in LMC rabbits in LV apex and RV mid. Erythromycin and E-4031 prolonged APD in LQT1 and LMC rabbits in all positions. However, erythromycin-induced percentaged APD prolongation related to baseline (%APD) was more pronounced in LQT1 at LV base-lateral and RV mid positions (100 µM, LQT1, +40.6±9.7% vs. LMC, +24.1±10.0%, p<0.05) and E-4031-induced %APD prolongation was more pronounced in LQT1 at LV base-lateral (0.01 µM, LQT1, +29.6±10.6% vs. LMC, +19.1±3.8%, p<0.05) and LV base-septal positions. Moreover, erythromycin significantly increased spatial APD dispersion only in LQT1 and increased triangulation only in LQT1 in LV base-septal and RV mid positions. Similarly, E-4031 increased triangulation only in LQT1 in LV apex and base-septal positions.

Conclusions

E-4031 and erythromycin prolonged APD and increased triangulation more pronouncedly in LQT1 than in LMC rabbits. Moreover, erythromycin increased APD dispersion only in LQT1, indicating that transgenic LQT1 rabbits could serve as sensitive model to detect HERG/IKr-blocking properties of drugs.  相似文献   

6.
Misfolded protein aggregation, including cataract, cause a significant amount of blindness worldwide. α-Crystallin is reported to bind misfolded proteins and prevent their aggregation. We hypothesize that supplementing retina and lens with α-crystallin may help to delay disease onset. The purpose of this study was to determine if αB-crystallin subunits containing a cell penetration peptide (gC-tagged αB-crystallin) facilitate the uptake of wild type αA-crystallin (WT-αA) in lens and retina. Recombinant human αB-crystallin was modified by the addition of a novel cell penetration peptide derived from the gC gene product of herpes simplex virus (gC-αB). Recombinant gC-αB and wild-type αA-crystallin (WT-αA) were purified from E. coli over-expression cultures. After Alexa-labeling of WT-αA, these proteins were mixed at ratios of 1:2, 1:5 and 1:10, respectively, and incubated at 37°C for 4 hours to allow for subunit exchange. Mixed oligomers were subsequently incubated with tissue culture cells or mouse organ cultures. Similarly, crystallin mixtures were injected into the vitreous of rat eyes. At various times after exposure, tissues were harvested and analyzed for protein uptake by confocal microscopy or flow cytometry. Chaperone-like activity assays were performed on α-crystallins ratios showing optimal uptake using chemically-induced or heat induced substrate aggregation assays. As determined by flow cytometry, a ratio of 1:5 for gC-αB to WT-αA was found to be optimal for uptake into retinal pigmented epithelial cells (ARPE-19). Chaperone-like activity assays demonstrated that hetero-oligomeric complex of gC-αB to WT-αA (in 1:5 ratio) retained protein aggregation protection. We observed a significant increase in protein uptake when optimized (gC-αB to WT-αA (1:5 ratio)) hetero-oligomers were used in mouse lens and retinal organ cultures. Increased levels of α-crystallin were found in lens and retina following intravitreal injection of homo- and hetero-oligomers in rats.  相似文献   

7.
Standardization of biomass production in different vessels and bioreactor using explants and media for growth, total phenolic content and antioxidant capacity of shoot culture of Bacopa monnieri is described. Maximum number of shoots per explant, higher explants response irrespective of the type of explants, and higher shoot length was obtained on MS medium containing BAP (2.5 mg l−1) and IAA (0.01 mg l−1) with 3 % sucrose. This medium was selected by varying BAP concentration and recorded optimal for shoot culture on gelled medium. The condition of 0.5 cm explant size and 20 explant/40 ml (1 explant/2 ml) was optimal for high explant response, number of shoots per explant regenerated and shoots length. Among the different vessels used, maximum growth index was achieved in Growtek bioreactor (10.0) followed by magenta box (9.16), industrial glass jar (7.7) and conical flask (7.2). The cultures grown in conical flask (100 ml) were used as control. The total phenolic content and antioxidant capacity of in vitro grown plants was higher to that recorded for in vivo material. Among in vitro regenerated plants, the activity was maximal in the tissues grown in 250 ml conical flask. The most critical function for vessels is to support the optimum profusion (growing area for maximum growth) of shoots and for B. monnieri, Growtek bioreactor supported 1980 shoots l−1 medium as compared to control (938 shoots l−1). Growtek bioreactor was considered effective system to produce B. monnieri biomass in culture without loss of antioxidant properties.  相似文献   

8.
The hepatopancreas of the adult male blue crab Callinectes sapidus in intermolt was found to contain substantial amounts of calcium, magnesium, and inorganic phosphorus, averaging about 260, 20, and 250 µg-atoms per g wet tissue, respectively, accounting for over 10% of the tissue dry weight. Electron microscopy of the intact tissue showed three qualitatively different granular structures having electron densities suggestive of high mineral content. After fractionation of the tissue using centrifugal techniques, almost 95% of the total mineral was found to reside in a heavy, nonmitochondrial particulate fraction(s). The bulk of the low-speed pellet consisted of relatively dense, roughly spherical granules 1–5 µm in diameter, which could be considerably purified by repeated suspension in water and low-speed sedimentation. In the electron microscope the isolated granules appeared basically similar to one of the three characteristic types of electron-dense granules seen in the intact tissue. Although the freshly isolated granules lost approximately 50% of their wet weight when dried at 105°C, only 10% more was lost upon dry ashing at 450°C, suggesting a fairly low content of organic material. Chemical analysis revealed calcium, magnesium, and inorganic phosphate at 5.7, 2.1, and 4.4 µg-atoms per mg dried granules, respectively, accounting for 69% of the dry weight of the fraction. By specific enzymatic assays, the freshly isolated granules were found to contain ATP, ADP, and AMP at levels of 0.13, 0.03, and 0.01 µmol/mg, or 8% of their total dry weight. The remainder of the total phosphorus contributed an additional 3%, whereas carbonate, citrate, oxalate, and protein each constituted no more than 1%. The mineral granules of the crab hepatopancreas appear to function as storage forms of calcium and phosphate during the intermolt period. This tissue appears promising as a model for study of the cellular events associated with biological calcification, since conventional biochemical techniques can be employed. Furthermore, the major mineralized component of the tissue can be obtained in large amounts for direct study by a simple fractionation procedure.  相似文献   

9.
Elaeocarpus serratus is a fruit tree able to propagate through conventional vegetative means to a limited extent restricts its wide cultivation by the farmers. In the present report, we have developed an efficient in vitro propagation protocol using mature nodal explants from a 17-year-old tree for the first time with 6.6 shoots/culture. Explants cultured on agar (0.8%) gelled standard Murashige and Skoog (MS) medium, ½ MS, ¾ MS, White’s, Gamborg’s B5 or woody plant medium (WPM) supplemented with 2.5 µM benzyl adenine (BA) and 0.1 µM α-naphthalene acetic acid (NAA) showed the superiority of ½ MS medium in terms of explant response and number shoots (6.6). Further optimization of ½ MS medium by altering nutrient elements (macros, micros, vitamins and Fe EDTA) were undertaken, and MS medium composed of half-strength major salts, original strength of minor salts and vitamins were supplemented with BA (2.5 µM) and NAA (0.1 µM), produced enhanced axillary bud proliferation (8.88/explant) and shoot elongation (3.83 cm). Reculturing of original explant on this medium after IV passages produced more than 16 healthy shoots per culture which attained a length of 4.13 cm. Microshoots raised through this way were rooted (86.11%) ex vitro by pulse treatment with 2 mM indole-3-butyric acid (IBA) for 5 min followed by planting in nursery pots containing a 1:1:1 (v/v/v) mix of sand, soil, and farmyard manure. The hardened plants were successfully planted in the fruit tree garden of the Department. Genetic fidelity of micropropagated and mother plants were tested using random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers which showed a high degree of monomorphism thus supported morphological uniformity of micropropagated plants.  相似文献   

10.

Introduction

Little is known about how neonatal airway epithelial cell phenotype impacts on respiratory disease in later life. This study aimed to establish a methodology to culture and characterise neonatal nasal epithelial cells sampled from healthy, non-sedated infants within 48 hours of delivery.

Methods

Nasal epithelial cells were sampled by brushing both nostrils with an interdental brush, grown to confluence and sub-cultured. Cultured cells were characterised morphologically by light and electron microscopy and by immunocytochemistry. As an exemplar pro-inflammatory chemokine, IL-8 concentrations were measured in supernatants from unstimulated monolayers and after exposure to IL-1β/TNF-α or house dust mite extract.

Results

Primary cultures were successfully established in 135 (91%) of 149 neonatal samples seeded, with 79% (n  =  117) successfully cultured to passage 3. The epithelial lineage of the cells was confirmed by morphological analysis and immunostaining. Constitutive IL-8 secretion was observed and was upregulated by IL-1β/TNF-α or house dust mite extract in a dose dependent manner.

Conclusion

We describe a safe, minimally invasive method of culturing nasal epithelial cells from neonates suitable for functional cell analysis offering an opportunity to study “naïve” cells that may prove useful in elucidating the role of the epithelium in the early origins of asthma and/or allergic rhinitis.  相似文献   

11.
The kinetics for the reduction of sulfate alone and for concurrent uranium [U(VI)] and sulfate reduction, by mixed and pure cultures of sulfate-reducing bacteria (SRB) at 21 ± 3°C were studied. The mixed culture contained the SRB Desulfovibrio vulgaris along with a Clostridium sp. determined via 16S ribosomal DNA analysis. The pure culture was Desulfovibrio desulfuricans (ATCC 7757). A zero-order model best fit the data for the reduction of sulfate from 0.1 to 10 mM. A lag time occurred below cell concentrations of 0.1 mg (dry weight) of cells/ml. For the mixed culture, average values for the maximum specific reaction rate, Vmax, ranged from 2.4 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1) at 0.25 mM sulfate to 5.0 ± 1.1 μmol of sulfate/mg (dry weight) of SRB · h−1 at 10 mM sulfate (average cell concentration, 0.52 mg [dry weight]/ml). For the pure culture, Vmax was 1.6 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1 at 1 mM sulfate (0.29 mg [dry weight] of cells/ml). When both electron acceptors were present, sulfate reduction remained zero order for both cultures, while uranium reduction was first order, with rate constants of 0.071 ± 0.003 mg (dry weight) of cells/ml · min−1 for the mixed culture and 0.137 ± 0.016 mg (dry weight) of cells/ml · min−1 (U0 = 1 mM) for the D. desulfuricans culture. Both cultures exhibited a faster rate of uranium reduction in the presence of sulfate and no lag time until the onset of U reduction in contrast to U alone. This kinetics information can be used to design an SRB-dominated biotreatment scheme for the removal of U(VI) from an aqueous source.  相似文献   

12.
Stroma cell-derived factor-1α (SDF-1α) is a cardioprotective chemokine, acting through its G-protein coupled receptor CXCR4. In experimental acute myocardial infarction, administration of SDF-1α induces an early improvement of systolic function which is difficult to explain solely by an anti-apoptotic and angiogenic effect. We wondered whether SDF-1α signaling might have direct effects on calcium transients and beating frequency.Primary rat neonatal cardiomyocytes were culture-expanded and characterized by immunofluorescence staining. Calcium sparks were studied by fluorescence microscopy after calcium loading with the Fluo-4 acetoxymethyl ester sensor. The cardiomyocyte enriched cellular suspension expressed troponin I and CXCR4 but was vimentin negative. Addition of SDF-1α in the medium increased cytoplasmic calcium release. The calcium response was completely abolished by using a neutralizing anti-CXCR4 antibody and partially suppressed and delayed by preincubation with an inositol triphosphate receptor (IP3R) blocker, but not with a ryanodine receptor (RyR) antagonist. Calcium fluxes induced by caffeine, a RyR agonist, were decreased by an IP3R blocker. Treatment with forskolin or SDF-1α increased cardiomyocyte beating frequency and their effects were additive. In vivo, treatment with SDF-1α increased left ventricular dP/dtmax.These results suggest that in rat neonatal cardiomyocytes, the SDF-1α/CXCR4 signaling increases calcium transients in an IP3-gated fashion leading to a positive chronotropic and inotropic effect.  相似文献   

13.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.  相似文献   

14.
In vitro folliculogenesis of primordial and early preantral follicles is necessary for increment of reproductive efficiency in domestic animals, humans and endangered species. Recent study in phosphatase and tensin homolog (Pten) -knockout mice has revealed that this phosphatase acts as an inhibitory factor in follicle activation of primordial pool with the resultant inhibition of oocyte growth. To test in vitro effect of a phosphatase inhibitor on growth initiation of isolated non-growing oocytes in neonatal ovaries, we applied a specific inhibitor (bpV (HOpic)) for PTEN in culturing system. Non-growing oocytes isolated from the ovaries of newborn BDF1 (C57BL/6 × DBA/2) pups were divided to four culture groups. Five days after culture, the oocytes in 14 μmol/l bpV only, 14 μmol/l bpV plus 100 ng/ml Kit Ligand (KL), and 100 ng/ml KL groups showed significantly (P<0.05) growth (19.3±0.55, 25.8±0.53 and 21.6±0.29 μm, respectively) compared with that of the control (no additive) (16.9±0.53 μm). In addition, western blotting in those groups showed enhanced expression of phosphorylated Akt. In conclusion, we clearly demonstrate that isolated non-growing oocytes develop in phosphatase inhibitor, especially to PTEN, incorporated culturing system, and show first as we know that oocytes with zona Pellucidae can be obtained in vitro from isolated non-growing oocytes.  相似文献   

15.
Left-to-right ventricular (LV/RV) differences in repolarization have been implicated in lethal arrhythmias in animal models. Our goal is to quantify LV/RV differences in action potential duration (APD) and APD rate adaptation and their contribution to arrhythmogenic substrates in the in vivo human heart using combined in vivo and in silico studies. Electrograms were acquired from 10 LV and 10 RV endocardial sites in 15 patients with normal ventricles. APD and APD adaptation were measured during an increase in heart rate. Analysis of in vivo electrograms revealed longer APD in LV than RV (207.8±21.5 vs 196.7±20.1 ms; P<0.05), and slower APD adaptation in LV than RV (time constant τs = 47.0±14.3 vs 35.6±6.5 s; P<0.05). Following rate acceleration, LV/RV APD dispersion experienced an increase of up to 91% in 12 patients, showing a strong correlation (r2 = 0.90) with both initial dispersion and LV/RV difference in slow adaptation. Pro-arrhythmic implications of measured LV/RV functional differences were studied using in silico simulations. Results show that LV/RV APD and APD adaptation heterogeneities promote unidirectional block following rate acceleration, albeit being insufficient for establishment of reentry in normal hearts. However, in the presence of an ischemic region at the LV/RV junction, LV/RV heterogeneity in APD and APD rate adaptation promotes reentrant activity and its degeneration into fibrillatory activity. Our results suggest that LV/RV heterogeneities in APD adaptation cause a transient increase in APD dispersion in the human ventricles following rate acceleration, which promotes unidirectional block and wave-break at the LV/RV junction, and may potentiate the arrhythmogenic substrate, particularly in patients with ischemic heart disease.  相似文献   

16.
Steady-state surface levels of the apical Na/K/2Cl cotransporter NKCC2 regulate NaCl reabsorption by epithelial cells of the renal thick ascending limb (THAL). We reported that constitutive endocytosis of NKCC2 controls NaCl absorption in native THALs; however, the pathways involved in NKCC2 endocytosis are unknown. We hypothesized that NKCC2 endocytosis at the apical surface depends on dynamin-2 and clathrin. Measurements of steady-state surface NKCC2 and the rate of NKCC2 endocytosis in freshly isolated rat THALs showed that inhibition of endogenous dynamin-2 with dynasore blunted NKCC2 endocytosis by 56 ± 11% and increased steady-state surface NKCC2 by 67 ± 27% (p < 0.05). Expression of the dominant negative Dyn2K44A in THALs slowed the rate of NKCC2 endocytosis by 38 ± 8% and increased steady-state surface NKCC2 by 37 ± 8%, without changing total NKCC2 expression. Inhibition of clathrin-mediated endocytosis with chlorpromazine blunted NKCC2 endocytosis by 54 ± 6%, while preventing clathrin from interacting with synaptojanin also blunted NKCC2 endocytosis by 52 ± 5%. Disruption of lipid rafts blunted NKCC2 endocytosis by 39 ± 4% and silencing caveolin-1 by 29 ± 4%. Simultaneous inhibition of clathrin- and lipid raft-mediated endocytosis completely blocked NKCC2 internalization. We concluded that dynamin-2, clathrin, and lipid rafts mediate NKCC2 endocytosis and maintain steady-state apical surface NKCC2 in native THALs. These are the first data identifying the endocytic pathway for apical NKCC2 endocytosis.  相似文献   

17.

Objective

To investigate injury pattern during intense exercises in hot and humid environment particularly on liver in a rat exertional heat stroke model.

Methods

We randomly divided 30 rats into a control group (CG), a normal temperature (25±2°C, 60%±5% humidity) exercise group (NTEG) and a high temperature and high humidity (35±2°C, 80%±10% humidity) exercising group (HTEG), each comprising 10 animals. The NTEG and HTEG rats were forced to run in a treadmill for 1 hour maximum at 20 rpm. We analyzed liver cells of all three groups with JC-1 dye and flow cytometry for apoptosis rates in addition to liver tissue 8 - hydroxy deoxyguanosine (8 - OhdG) and blood serum IL–6, tumor necrosis factor alpha (TNF-α), alanine aminotransferase ALT, aspartate amino transferase (AST), serum creatinine (CREA), blood urea nitrogen (BUN), lactate dehydrogenase (LDH), creatine phosphate kinase (CK) concentrations.

Result

Compared with NTEG rats, beside reduced exercise tolerance (60±5 vs. 15±3 minutes) (p = 0.002) the 8-OhdG liver tissue concentrations were significantly higher (p = 0.040) in the HTEG rats. The HTEG developed more organ tissue damage and cellular fragmentations of liver cells. In both exercise groups TNF-α and IL-6 serum concentrations were enhanced significantly (p<0.001) being highest in the HTEG animals. Serum ALT, AST, LDH, CREA, BUN and CK concentrations were significantly enhance in both exercise groups.

Conclusion

In our exertional heat stroke rat model, we found tissue damage particularly in livers during exercises in hot and humid environment that was related to inflammation, oxidative stress and apoptosis.  相似文献   

18.
19.
Summary The distribution of atrial natriuretic peptide binding sites on cells in dissociated culture preparations of neonatal rat superior cervical ganglia and in explant cultures of rat thoracic sympathetic chain ganglia has been studied. The autoradiographic visualisation of atrial natriuretic peptide binding sites has been combined with the use of specific immunocytochemical markers for glial cells (antiserum to S-100 protein), fibroblasts (antiserum to fibronectin) and neurones (antiserum to protein gene product 9.5) in order to achieve unambiguous identification of the cell types in culture. Specific binding sites for rat125I-atrial natriuretic peptide(1–28) were observed over subpopulations of fibronectin-like-immunoreactive fibroblasts and S-100-like-immunoreactive glia in the dissociated superior cervical ganglion cultures. However, only a subpopulation of fibronectin-like-immunoreactive fibroblasts possessed atrial natriuretic peptide binding sites in the explant culture preparations. No atrial natriuretic peptide-like-immunoreactive cells were present in either culture. The distribution of autoradiographic grains over individual cell surfaces in culture was uniform, but there were distinct differences in the density of labelling of single cells of the same type. This apparent variation in the number of binding sites on glial cells and fibroblasts in culture did not seem to be related to the morphology of the cells or the surrounding cell types. No sympathetic neurones were labelled with autoradiographic grains in either the dissociated or explant culture preparations. However, the presence of atrial natriuretic peptide binding sites on non-neuronal cells of sympathetic ganglia in culture may be linked to the relationship between atrial natriuretic peptide and the sympathetic nervous system.  相似文献   

20.

Introduction

Fibroblasts are important in the atrial fibrillation (AF) substrate resulting from congestive heart failure (CHF). We previously noted changes in in vivo indices of fibroblast function in a CHF dog model, but could not detect changes in isolated cells. This study assessed CHF-induced changes in the phenotype of fibroblasts freshly isolated from control versus CHF dogs, and examined effects of cell culture on these differences.

Methods/Results

Left-atrial fibroblasts were isolated from control and CHF dogs (ventricular tachypacing 240 bpm×2 weeks). Freshly-isolated fibroblasts were compared to fibroblasts in primary culture. Extracellular-matrix (ECM) gene-expression was assessed by qPCR, protein by Western blot, fibroblast morphology with immunocytochemistry, and K+-current with patch-clamp. Freshly-isolated CHF fibroblasts had increased expression-levels of collagen-1 (10-fold), collagen-3 (5-fold), and fibronectin-1 (3-fold) vs. control, along with increased cell diameter (13.4±0.4 µm vs control 8.4±0.3 µm) and cell spreading (shape factor 0.81±0.02 vs. control 0.87±0.02), consistent with an activated phenotype. Freshly-isolated control fibroblasts displayed robust tetraethylammonium (TEA)-sensitive K+-currents that were strongly downregulated in CHF. The TEA-sensitive K+-current differences between control and CHF fibroblasts were attenuated after 2-day culture and eliminated after 7 days. Similarly, cell-culture eliminated the ECM protein-expression and shape differences between control and CHF fibroblasts.

Conclusions

Freshly-isolated CHF and control atrial fibroblasts display distinct ECM-gene and morphological differences consistent with in vivo pathology. Culture for as little as 48 hours activates fibroblasts and obscures the effects of CHF. These results demonstrate potentially-important atrial-fibroblast phenotype changes in CHF and emphasize the need for caution in relating properties of cultured fibroblasts to in vivo systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号