共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Apoptosis induced by disruption of the actin cytoskeleton is mediated via activation of CD95 (Fas/APO-1) 总被引:4,自引:0,他引:4
Kulms D Düssmann H Pöppelmann B Ständer S Schwarz A Schwarz T 《Cell death and differentiation》2002,9(6):598-608
Activation of the death receptor CD95 by its ligand or by UV radiation is associated with receptor clustering. The mechanism underlying this clustering is mostly unclear. Here we show that although disruption of the actin cytoskeleton by cytochalasin B (CyB) itself induces moderate apoptosis, it enhances apoptosis in HeLa cells induced either by UV radiation or an agonistic anti-CD95 antibody. CyB augments UV-induced apoptosis independently of UV-mediated DNA damage, since induction of DNA repair by exogenous DNA repair enzymes did not alter its enhancing effect. Inhibition of caspase-8, the most upstream caspase in CD95 signaling, blocked the apoptotic effect of CyB and the enhancing effect on UV- and CD95-induced apoptosis. Confocal laser scanning microscopy revealed that (i) CyB induces CD95 clustering, (ii) enhances UV-induced CD95 clustering, and (iii) CD95 clusters colocalize with disrupted actin filaments, suggesting a link between receptor clustering and actin rearrangement. Disruption of CD95 signaling by a dominant negative mutant of the signaling protein FADD protected from CyB-induced apoptosis and prevented the UV-enhancing effect. Accordingly, both the apoptotic and the enhancing effect of CyB was reduced in epidermal cells obtained from CD95 deficient mice (lpr) when compared to wild-type mice. These data suggest that disruption of the cytoskeleton causes apoptosis via activation of CD95 and enhances UV-induced apoptosis, possibly via aiding receptor clustering. 相似文献
3.
Urban C Rhême C Maerz S Berg B Pick R Nitschke R Borner C 《Cell death and differentiation》2008,15(9):1396-1407
The RNA alphavirus Semliki Forest (SFV) triggers apoptosis in various mammalian cells, but it has remained controversial at what infection stage and by which signalling pathways host cells are killed. Both RNA synthesis-dependent and -independent initiation processes and mitochondrial as well as death receptor signalling pathways have been implicated. Here, we show that SFV-induced apoptosis is initiated at the level of RNA replication or thereafter. Moreover, by expressing antiapoptotic genes from recombinant SFV (replicons) and by using neutralizing reagents and gene-knockout cells, we provide clear evidence that SFV does not require CD95L-, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)- or tumor necrosis factor-mediated signalling but mitochondrial Bak to trigger cytochrome c release, the fall in the mitochondrial membrane potential, apoptotic protease-activating factor-1/caspase-9 apoptosome formation and caspase-3/-7 activation. Of seven BH3-only proteins tested, only Bid contributed to effective SFV-induced apoptosis. However, caspase-8 activation and Bid cleavage occurred downstream of Bax/Bak, indicating that truncated Bid formation serves to amplify rather than trigger SFV-induced apoptosis. Our data show that SFV sequentially activates a mitochondrial, Bak-mediated, caspase-8-dependent and Bid-mediated death signalling pathway that can be accurately dissected with gene-knockout cells and SFV replicons carrying antiapoptotic genes. 相似文献
4.
Degradation of membrane compartments, organelles and other debris through macroautophagy (hereafter referred to as autophagy) is thought to occur in most, maybe all, cells. We recently reported the discovery of a neuron-specific endomembrane degradation mechanism that depends on the vesicle SNARE neuronal Synaptobrevin (n-Syb) and the vesicle ATPase component V100 (the V(0)a1 subunit). Loss of n-Syb causes degeneration of adult photoreceptor neurons in Drosophila, reminiscent of adult-onset degeneration in neurons with defective autophagy. Here we explore the potential importance of this newly discovered neuron-specific degradation mechanism in comparison with ubiquitous autophagy machinery for adult-onset neurodegeneration. 相似文献
5.
《Autophagy》2013,9(4):711-713
Degradation of membrane compartments, organelles and other debris through macroautophagy (hereafter referred to as autophagy) is thought to occur in most, maybe all, cells. We recently reported the discovery of a neuron-specific endomembrane degradation mechanism that depends on the vesicle SNARE neuronal Synaptobrevin (n-Syb) and the vesicle ATPase component V100 (the V0a1 subunit). Loss of n-Syb causes degeneration of adult photoreceptor neurons in Drosophila, reminiscent of adult-onset degeneration in neurons with defective autophagy. Here we explore the potential importance of this newly discovered neuron-specific degradation mechanism in comparison with ubiquitous autophagy machinery for adult-onset neurodegeneration. 相似文献
6.
7.
G Engberg 《Life sciences》1989,44(21):1535-1540
Previous electrophysiological studies have shown that systemically administered nicotine in low doses increases the firing rate of rat locus coeruleus (LC) neurons. In the present study, this action of nicotine was found to be prevented by pretreatment with kynurenic acid (1 mumol; i.c.v.). In addition, pretreatment with MK 801 effectively blocked the nicotine induced LC excitation in most neurons tested (60%) whereas the rest were left unaffected by this treatment. It is suggested that excitatory amino acids (EAA), e.g. released from nerve terminals from nucleus paragigantocellularis (PGi), indirectly mediated the effect of nicotine on LC neurons. 相似文献
8.
9.
Nomura M Nomura N Yamashita J 《Biochemical and biophysical research communications》2005,335(3):900-905
Checkpoint kinase 1 (Chk1) is a cell cycle regulator and a heat shock protein 90 (Hsp90) client. It is essential for cell proliferation and survival. In this report, we analyzed the mechanisms of Chk1 regulation in U87MG glioblastoma cells using Geldanamycin (GA), which interferes with the function of Hsp90. GA reduced Chk1 protein level but not its mRNA level in glioblastoma cells. Co-treatment with GA and cycloheximide (CHX), a protein synthesis inhibitor, induced a decrease of half-life of the Chk1 protein to 3h and resulted in Chk1 down-regulation. CHX alone induced only 32% reduction of Chk1 protein even after 24h. These findings indicated that reduction of Chk1 by GA was due to destabilization and degradation of the protein. In addition, GA-induced down-regulation of Chk1 was reversed by MG132, a specific proteasome inhibitor. And it was revealed that Chk1 was ubiquitinated by GA. These results have indicated that degradation of Chk1 by GA was mediated by the ubiquitin-proteasome pathway in U87MG glioblastoma cells. 相似文献
10.
Kawai H Wiederschain D Kitao H Stuart J Tsai KK Yuan ZM 《The Journal of biological chemistry》2003,278(46):45946-45953
Although genetic studies have demonstrated that MDMX is essential to maintain p53 activity at low levels in non-stressed cells, it is unknown whether MDMX regulates p53 activation by DNA damage. We show here that DNA damage-induced p53 induction is associated with rapid down-regulation of the MDMX protein. Significantly, interference with MDMX down-regulation results in the suppression of p53 activation by genotoxic stress. We also demonstrate that DNA damage-induced MDMX reduction is mediated by MDM2, which targets MDMX for proteasomal degradation by a distinct mechanism that permits preferential MDMX degradation and therefore ensures optimal p53 activation. 相似文献
11.
C.H. Han Z.B. Guan P.X. Zhang H.L. Fang L. Li H.M. Zhang F.J. Zhou Y.F. Mao W.W. Liu 《Biochemical and biophysical research communications》2018,495(3):2178-2183
Necroptosis has been found to be involved in the pathogenesis of some lung diseases, but its role in hyperoxic acute lung injury (HALI) is still unclear. This study aimed to investigate contribution of necroptosis to the pathogenesis of HALI induced by hyperbaric hyperoxia exposure in a rat model. Rats were divided into control group, HALI group, Nec-1 (necroptosis inhibitor) group and edaravone group. Rats were exposed to pure oxygen at 250?kPa for 6?h to induce HALI. At 30?min before hyperoxia exposure, rats were intraperitoneally injected with Nec-1 or edaravone, and sacrificed at 24?h after hyperoxia exposure. Lung injury was evaluated by histology, lung water to dry ratio (W/D) and bronchoalveolar lavage fluid (BALF) biochemistry; the serum and plasma oxidative stress, expression of RIP1, RIP3 and MLKL, and interaction between RIP1 and RIP3 were determined. Results showed hyperoxia exposure significantly caused damage to lung and increased necroptotic cells and the expression of RIP1, RIP3 and MLKL. Edaravone pre-treatment not only inhibited the oxidative stress in HALI, but also reduced necroptotic cells, decreased the expression of RIP1, RIP3 and MLKL and improved lung pathology. Nec-1 pretreatment inhibited necroptosis and improved lung pathology, but had little influence on oxidative stress. This study suggests hyperoxia exposure induces oxidative stress may activate necroptosis, involving in the pathology of HALI, and strategies targeting necroptosis may become promising treatments for HALI. 相似文献
12.
F-Box proteins (FBPs) are variable adaptor proteins that earmark protein substrates for ubiquination and destruction by the proteasome. Through their N-terminal F-box motif, they couple specific protein substrates to a catalytic machinery known as SCF (Skp-1/Cul1/F-Box) E3-ubiquitin ligase. Typical FBPs bind the specific substrates in a phosphorylation dependent manner via their C-termini using either leucine rich repeats (LRR) or tryptophan-aspartic acid (WD40) domains for substrate recognition. By using a gene trap strategy that selects for genes induced during programmed cell death, we have isolated the mouse homolog of the hypothetical human F-Box protein 33 (FBX33). Here we identify FBX33 as a component of an SCF E3-ubiquitin ligase that targets the multifunctional regulator Y-box binding protein 1 (YB-1)/dbpB/p50 for polyubiquitination and destruction by the proteasome. By targeting YB-1 for proteasomal degradation, FBX33 negatively interferes with YB-1 mediated functions. In contrast to typical FBPs, FBX33 has no C-terminal LRR or WD40 domains and associates with YB-1 via its N-terminus. The present study confirms the existence of a formerly hypothetical F-Box protein in living cells and describes one of its substrates. 相似文献
13.
Certain murine leukemia viruses (MLVs) can induce progressive noninflammatory spongiform neurodegeneration similar to that caused by prions. The primary MLV determinants responsible have been mapped to within the env gene; however, it has remained unclear how env mediates disease, whether non-Env viral components are required, and what central nervous system (CNS) cells constitute the critical CNS targets. To address these questions, we examined the effect of transplanting engraftable C17.2 neural stem cells engineered to pseudotype, disseminate, and trans-complement neurovirulent (CasBrE, CasE, and CasES) or non-neurovirulent (Friend and SFF-FE) env sequences (SU or SU/TM) within the CNS using either the "non-neurovirulent" amphotropic helper virus, 4070A, or pgag-polgpt (a nonpackaged vector encoding Gag-Pol). These studies revealed that acute MLV-induced spongiosis results from two separable activities of Env. First, Env causes neuropathology through unique viral targeting within the CNS, which was efficiently mediated by ecotropic Envs (CasBrE and Friend), but not 4070A amphotropic Env. Second, Env induces spongiosis through a toxin activity that is MLV-receptor independent and does not require the coexpression of other viral structural proteins. CasBrE and 4070A Envs possess the toxin activity, whereas Friend Env does not. Although the identity of the critical viral target cell(s) remains unresolved, our results appear to exclude microglia and oligodendrocyte lineage cells, while implicating viral entry into susceptible neurons. Thus, MLV-induced disease parallels prionopathies in that a single protein, Env, mediates both the CNS targeting and the toxicity of the infectious agent that manifests itself as progressive vacuolar neurodegeneration. 相似文献
14.
The mechanism of glucocorticoid-induced internucleosomal DNA cleavage and cytolysis of lymphatic cells is not known. Recent data (Compton, M.M., and Cidlowski, J.A. (1987) J. Biol. Chem. 262, 8288-8292) suggested that in vivo treatment of rat thymocytes with glucocorticoids induces a nucleolytic "lysis gene" product(s) responsible for lymphocytolysis. In this paper, the possibility that lymphocytolysis may result from glucocorticoid-induced nuclease(s) was examined. Using the rat thymocytes as a model system, we have shown by electrophoretic, enzymatic, and amino acid sequence analysis that the putative glucocorticoid-induced nucleases identified recently by Compton and Cidlowski are in fact H1, H1(0), and core histones, and their gross appearance is not the result of new histone protein synthesis, but a result of the release of histone-containing nucleosomes during chromatin breakdown. Evidence presented here shows that the putative induced nuclease activity is an artifact of the assay system employed. Because our data do not support induction of a glucocorticoid-induced nuclease(s), we examined the possibility that DNA cleavage might be induced by activation of a constitutive endogenous endonuclease. We have shown that it is possible to produce characteristic internucleosomal DNA cleavage of rat thymocytes, merely by incubating intact nuclei from untreated adrenalectomized rat thymocytes with Ca2+ and Mg2+ for a short period of time. However, in glucocorticoid-sensitive human CEM-C7 lymphocytes activation of internucleosomal DNA cleavage was independent of calcium uptake. We conclude that glucocorticoid induction of internucleosomal DNA fragmentation does not necessarily require expression of a new nuclease(s), but is the result of the activation of a constitutive endogenous endonuclease(s). Also, our data suggest that the mechanism which controls activation of internucleosomal DNA cleavage in rat thymocytes differs from that which operates in CEM-C7 lymphocytes. 相似文献
15.
The majority of cellobiase activity in Termitomyces clypeatus was localized in vacuolar fractions of the fungus under secretory and nonsecretory conditions of growth. Activities of marker proteins for subcellular organelles, e.g., vacuoles, cytosol, ER, and mitochondria, in mycelial extracts from the secreting conditions increased by approximately 20, 12, 5, and 2.5 times, respectively, as compared to those obtained from mycelium grown in nonsecreting conditions. The average size and concentration of vacuoles visualized by electron microscopy were also increased in secreting conditions in the fungus. The specific activity of cellobiase in vacuoles isolated in Ficoll-sucrose gradient, as obtained from mycelial growth in secretory medium, was more than 40 times higher in comparison to that found from nonsecretory medium. The results indicated that subcellular localization of cellobiase in vacuoles is regulated by the cellular signaling prevailing in the fungus. Mycelial extraction of intracellular proteins by hand grinding and by bead-beater from cells frozen in the presence or absence of liquid nitrogen was also compared. Maximum recovery of intracellular protein was obtained with the bead-beater under aerobic conditions in the absence of nitrogen. Highest recovery of vacuoles up to 85% was obtained by single-step ultracentrifugation of the mycelial extract of the fungus in Ficoll-sucrose gradient. The method appeared to be useful for separation of other subcellular organelles in filamentous fungi. 相似文献
16.
Exit from mitosis requires Cdk1 inactivation, with the most prominent mechanism of Cdk1 inactivation being proteolysis of mitotic cyclins [1]. In higher eukaryotes this involves sequential destruction of A- and B-type cyclins. CycA is destroyed first, and CycA/Cdk1 inactivation is required for the metaphase-to-anaphase transition [2]. The degradation of CycA is delayed in response to DNA damage but is not prevented when the spindle checkpoint is activated [3, 4]. Cyclin destruction is thought to be mediated by a conserved motif, the destruction box (D box). Like B-type cyclins, A-type cyclins contain putative destruction box sequences in their N termini [5]. However, no detailed in vivo analysis of the sequence requirements for CycA destruction has been described so far. Here we tested several mutations in the CycA coding region for destruction in Drosophila embryos. We show that D box sequences are not essential for mitotic destruction of CycA. Destruction is mediated by at least three different elements that act in an overlapping fashion to mediate its mitotic degradation. 相似文献
17.
Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin 总被引:11,自引:0,他引:11
Cofilin, an essential regulator of actin filament dynamics, is inactivated by phosphorylation at Ser-3 and reactivated by dephosphorylation. Although cofilin undergoes dephosphorylation in response to extracellular stimuli that elevate intracellular Ca2+ concentrations, signaling mechanisms mediating Ca2+-induced cofilin dephosphorylation have remained unknown. We investigated the role of Slingshot (SSH) 1L, a member of a SSH family of protein phosphatases, in mediating Ca2+-induced cofilin dephosphorylation. The Ca2+ ionophore A23187 and Ca2+-mobilizing agonists, ATP and histamine, induced SSH1L activation and cofilin dephosphorylation in cultured cells. A23187- or histamine-induced SSH1L activation and cofilin dephosphorylation were blocked by calcineurin inhibitors or a dominant-negative form of calcineurin, indicating that calcineurin mediates Ca2+-induced SSH1L activation and cofilin dephosphorylation. Importantly, knockdown of SSH1L expression by RNA interference abolished A23187- or calcineurin-induced cofilin dephosphorylation. Furthermore, calcineurin dephosphorylated SSH1L and increased the cofilin-phosphatase activity of SSH1L in cell-free assays. Based on these findings, we suggest that Ca2+-induced cofilin dephosphorylation is mediated by calcineurin-dependent activation of SSH1L. 相似文献
18.
In vitro, rapid assembly of gap junctions is induced by cytoskeleton disruptors 总被引:1,自引:1,他引:1
下载免费PDF全文

We report here rapid assembly of gap junctions in prostate epithelial cells in vitro. Assembly of gap junctions can be induced by incubation at 0 degrees C followed by incubation at 37 degrees C. Colchicine (10(- 5) M, 10(-3) M) and cytochalasin B (25 micrograms/ml), 100 micrograms/ml) at room temperature or at 37 degrees C also induce assembly of gap junctions. Assembly of the junctions proceeds even in the presence of a metabolic inhibitor (dinitrophenol) or of an inhibitor of protein synthesis (cycloheximide). We conclude that assembly of gap junctions can proceed from a pool of pre-existing precursors. The experimental conditions that result in gap-junction assembly involve perturbation of the cytoskeleton. Therefore, we propose that the assembly of gap junctions requires convergent migration of precursor molecules whose positional control in the membrane is released by perturbation of the cytoskeleton. Aggregates of particles and rugosities, whose distribution size and shape is similar to that of gap junctions, may represent intermediate assembly stages. This would indicate that the final stages in the assembly take place only after convergence of the precursor molecules to the junctional site and involve profound conformational changes required for establishment of fully assembled connexons. 相似文献
19.
A novel proteolytic activity integrally associated with barley thylakoid membranes has been discovered and characterized. This enzymatic activity mediates senescence-dependent degradation of Lhcb3, one of the apoproteins of the major light-harvesting chlorophyll a/b protein complex of photosystem II. Once senescence of barley leaves is initiated by detachment and dark incubation, the degradation of Lhcb3 can proceed and be followed in vitro in an experimental system composed of thylakoids isolated from senescing leaves incubated in darkness in suitable medium at 25 degrees C. The protease involved is present in its active form and Lhcb3 is susceptible for proteolytic attack already in fresh leaves, although Lhcb3 degradation does not take place unless undefined extrinsic membrane proteins protecting Lhcb3 are removed in a senescence-dependent manner. It is thus concluded that senescence-dependent Lhcb3 degradation is regulated at the substrate availability level. The protease involved is ATP stimulated, has an optimum activity at pH 7.8, and requires 3 mM added Mg2+ (replicable by micromolar doses of Zn2+) for its proper activity. Studies using typical inhibitors of various classes of proteases indicate that the enzyme is a metalloprotease with disulfide linkage essential for its activity. Micromolar doses of Zn2+ were demonstrated to restore the activity of Lhcb3-degrading enzymes abolished by an ethylenediaminetetraacetic acid pretreatment of the thylakoids and it is inferred that the protease involved is a zinc-binding metalloprotease. Mg2+ was shown to be able to partially replace zinc as the bound ion. 相似文献
20.
Alzheimer disease (AD) is a progressive, neurodegenerative disorder that leads to debilitating cognitive deficits. Although little is known about the early functional or ultrastructural changes associated with AD, it has been proposed that a stage of synaptic dysfunction might precede neurodegeneration in the development of this disease. Unfortunately, the molecular mechanisms that underlie such synaptic dysfunction remain largely unknown. Recently we have shown that beta-amyloid (Abeta), the main component of senile plaques, induced a significant decrease in dynamin 1, a protein that plays a critical role in synaptic vesicle recycling, and hence, in the signaling properties of the synapse. We report here that this dynamin 1 degradation was the result of calpain activation induced by the sustained calcium influx mediated by N-methyl-D-aspartate receptors in hippocampal neurons. In addition, our results showed that soluble oligomeric Abeta, and not fibrillar Abeta, was responsible for this sustained calcium influx, calpain activation, and dynamin 1 degradation. Considering the importance of dynamin 1 to synaptic function, these data suggest that Abeta soluble oligomers might catalyze a stage of synaptic dysfunction that precedes synapse loss and neurodegeneration. These data also highlight the calpain system as a novel therapeutic target for early stage AD intervention. 相似文献