首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing evidence underscores overlapping neurobiological pathways to addiction and obesity. In both conditions, reward processing of preferred stimuli is enhanced, whereas the executive control system that would normally regulate reward‐driven responses is altered. This abnormal interaction can be greater in adolescence, a period characterized by relative immaturity of executive control systems coupled with the relative maturity of reward processing systems. The aim of this study is to explore neuropsychological performance of adolescents with excess weight (n = 27, BMI range 24–51 kg/m2) vs. normal‐weight adolescents (n = 34, BMI range 17–24 kg/m2) on a comprehensive battery of executive functioning tests, including measures of working memory (letter‐number sequencing), reasoning (similarities), planning (zoo map), response inhibition (five‐digit test (FDT)–interference and Stroop), flexibility (FDT–switching and trail‐making test (TMT)), self‐regulation (revised‐strategy application test (R‐SAT)), and decision‐making (Iowa gambling task (IGT)). We also aimed to explore personality traits of impulsivity and sensitivity to reward. Independent sample t‐ and Z Kolmogorov–Smirnov tests showed significant differences between groups on indexes of inhibition, flexibility, and decision‐making (excess‐weight participants performed poorer than controls), but not on tests of working memory, planning, and reasoning, nor on personality measures. Moreover, regression models showed a significant association between BMI and flexibility performance. These results are indicative of selective alterations of particular components of executive functions in overweight adolescents.  相似文献   

2.
Risk-taking is subject to considerable individual differences. In the current study, we tested whether resting-state activity in the prefrontal cortex and trait sensitivity to reward and punishment can help predict risk-taking behavior. Prefrontal activity at rest was assessed in seventy healthy volunteers using electroencephalography, and compared to their choice behavior on an economic risk-taking task. The Behavioral Inhibition System/Behavioral Activation System scale was used to measure participants’ trait sensitivity to reward and punishment. Our results confirmed both prefrontal resting-state activity and personality traits as sources of individual differences in risk-taking behavior. Right-left asymmetry in prefrontal activity and scores on the Behavioral Inhibition System scale, reflecting trait sensitivity to punishment, were correlated with the level of risk-taking on the task. We further discovered that scores on the Behavioral Inhibition System scale modulated the relationship between asymmetry in prefrontal resting-state activity and risk-taking. The results of this study demonstrate that heterogeneity in risk-taking behavior can be traced back to differences in the basic physiology of decision-makers’ brains, and suggest that baseline prefrontal activity and personality traits might interplay in guiding risk-taking behavior.  相似文献   

3.

Introduction

Cognitive and behavioral impairments are common in patients with abnormal thyroid function; these impairments cause a reduction in their quality of life. The current study investigates the decision making performance in patients with hyperthyroidism to explore the possible mechanism of their cognitive and behavioral impairments.

Methods

Thirty-eight patients with hyperthyroidism and forty healthy control subjects were recruited to perform the Iowa Gambling Task (IGT), which assessed decision making under ambiguous conditions.

Results

Patients with hyperthyroidism had a higher score on the Zung Self-Rating Anxiety Scale (Z-SAS), and exhibited poorer executive function and IGT performance than did healthy control subjects. The patients preferred to choose decks with a high immediate reward, despite a higher future punishment, and were not capable of effectively using feedback information from previous choices. No clinical characteristics were associated with the total net score of the IGT in the current study.

Conclusions

Patients with hyperthyroidism had decision-making impairment under ambiguous conditions. The deficits may result from frontal cortex and limbic system metabolic disorders and dopamine dysfunction.  相似文献   

4.
Consistent individual differences in behaviour of animals, that is, personalities, are both widespread and widely studied, but very few studies also include cognitive traits in this context. Animal personality has recently been integrated into the pace‐of‐life‐syndrome hypothesis, relating individual behavioural traits to life history. Variation in cognitive traits could be explained well by this theoretical framework. A risk‐reward trade‐off might lead to different cognitive types: Active birds that learn fast, take risks and probably have a fast lifestyle and less active, slow learning birds that are risk averse but thereby perform better in reversal learning as they probably pay more attention to external cues. We investigated the performance of zebra finches (Taeniopygia guttata) in a cognitively challenging reversal learning task and linked this to two personality traits: activity and fearfulness. Male birds were better in reversal learning than females. While no personality‐related differences occurred in the initial learning of our task, more active and fearful birds relearned the cue–reward association faster. While birds of different sex might have revealed different risk‐taking strategies in the training, our findings do not reveal the expected direction of a risk‐reward trade‐off in the reversal learning. It seems likely that a more general and personality‐related cognitive ability might improve performance across different tasks. The linkage between personality and cognition documented here could hence suggest that cognitive traits are indeed part of an overall pace‐of‐life syndrome.  相似文献   

5.
A functional variant of the catechol‐O‐methyltransferase (COMT) gene [val158met (rs4680)] is frequently implicated in decision‐making and higher cognitive functions. It may achieve its effects by modulating dopamine‐related decision‐making and reward‐guided behaviour. Here we demonstrate that individuals with the met/met polymorphism have greater responsiveness to reward than carriers of the val allele and that this correlates with risk‐seeking behaviour. We assessed performance on a reward responsiveness task and the Balloon analogue risk task, which measure how participants (N = 70, western European, university and postgraduate students) respond to reward and take risks in the presence of available reward. Individuals with the met/met genotype (n = 19) showed significantly higher reward responsiveness, F2,64 = 4.02, P = 0.02, and reward‐seeking behaviour, F(2,68) = 4.52, P = 0.01, than did either val/met (n = 25) or val/val (n = 26) carriers. These results highlight a scenario in which genotype‐dependent reward responsiveness shapes reward‐seeking, therefore suggesting a novel framework by which COMT may modulate behaviour.  相似文献   

6.
The Iowa Gambling Task (IGT) developed by Bechara et al. in 1994 is used to diagnose patients with Ventromedial Medial Prefrontal Cortex (VMPFC) lesions, and it has become a landmark in research on decision making. According to Bechara et al., the manipulation of progressive increments of monetary value can normalize the performance of patients with VMPFC lesions; thus, they developed a computerized version of the IGT. However, the empirical results showed that patients'' performances did not improve as a result of this manipulation, which suggested that patients with VMPFC lesions performed myopically for future consequences. Using the original version of the IGT, some IGT studies have demonstrated that increments of monetary value significantly influence the performance of normal subjects in the IGT. However, other research has resulted in inconsistent findings. In this study, we used the computerized IGT (1X-IGT) and manipulated the value contrast of progressive increments (i.e., by designing the 10X-IGT, which contained 10 times of progressive increment) to investigate the influence of value contrast on the performance of normal subjects. The resulting empirical observations indicated that the value contrast (1X- vs. 10X-IGT) of the progressive increment had no effect on the performance of normal subjects. This study also provides a discussion of the issue of value in IGT-related studies. Moreover, we found the “prominent deck B phenomenon” in both versions of the IGT, which indicated that the normal subjects were guided mostly by the gain-loss frequency, rather than by the monetary value contrast. In sum, the behavioral performance of normal subjects demonstrated a low correlation with changes in monetary value, even in the 10X-IGT.  相似文献   

7.

Background

The processing of reward and punishment stimuli in humans appears to involve brain oscillatory activity of several frequencies, probably each with a distinct function. The exact nature of associations of these electrophysiological measures with impulsive or risk-seeking personality traits is not completely clear. Thus, the aim of the present study was to investigate event-related oscillatory activity during reward processing across a wide spectrum of frequencies, and its associations with impulsivity and sensation seeking in healthy subjects.

Methods

During recording of a 32-channel EEG 22 healthy volunteers were characterized with the Barratt Impulsiveness and the Sensation Seeking Scale and performed a computerized two-choice gambling task comprising different feedback options with positive vs. negative valence (gain or loss) and high or low magnitude (5 vs. 25 points).

Results

We observed greater increases of amplitudes of the feedback-related negativity and of activity in the theta, alpha and low-beta frequency range following loss feedback and, in contrast, greater increase of activity in the high-beta frequency range following gain feedback. Significant magnitude effects were observed for theta and delta oscillations, indicating greater amplitudes upon feedback concerning large stakes. The theta amplitude changes during loss were negatively correlated with motor impulsivity scores, whereas alpha and low-beta increase upon loss and high-beta increase upon gain were positively correlated with various dimensions of sensation seeking.

Conclusions

The findings suggest that the processing of feedback information involves several distinct processes, which are subserved by oscillations of different frequencies and are associated with different personality traits.  相似文献   

8.
There are two broad functional explanations for second-party punishment: fitness-leveling and deterrence. The former suggests that people punish to reduce fitness differences, while the latter suggests that people punish in order to reciprocate losses and deter others from inflicting losses on them in the future. We explore the relative roles of these motivations using a pre-registered, two-player experiment with 2426 US participants from Amazon Mechanical Turk. Participants played as the “responder” and were assigned to either a Take or Augment condition. In the Take condition, the “partner” could steal money from the responder's bonus or do nothing. In the Augment condition, the partner could augment the responder's bonus by giving them money at no cost to themselves or do nothing. We also manipulated the responders' starting endowments, such that after the partner's decision, responders experienced different payoff outcomes: advantageous inequity, equality, or varying degrees of disadvantageous inequity. Responders then decided whether to pay a cost to punish the partner. Punishment was clearly influenced by theft and was most frequent when theft resulted in disadvantageous inequity. However, people also punished in the absence of theft, particularly when confronted with disadvantageous inequity. While the effect of inequity on punishment was small, our results suggest that punishment is motivated by more than just the desire to reciprocate losses. These findings highlight the multiple motivations undergirding punishment and bear directly on functional explanations for the existence of punishment in human societies.  相似文献   

9.
The Iowa Gambling Task (IGT) is widely used to assess real life decision-making impairment in a wide variety of clinical populations. Our study evaluated how IGT learning occurs across two sessions, and whether a period of intervening sleep between sessions can enhance learning. Furthermore, we investigate whether pre-sleep learning is necessary for this improvement. A 200-trial version of the IGT was administered at two sessions separated by wake, sleep or sleep and wake (time-of-day control). Participants were categorized as learners and non-learners based on initial performance in session one. In session one, participants initially preferred the high-frequency reward decks B and D, however, a subset of learners decreased choice from negative expected value ‘bad’ deck B and increased choices towards with a positive expected value ‘good’ decks (decks C and D). The learners who had a period of sleep (sleep and sleep/wake control conditions) between sessions showed significantly larger reduction in choices from deck B and increase in choices from good decks compared to learners that had intervening wake. Our results are the first to show that post-learning sleep can improve performance on a complex decision-making task such as the IGT. These results provide new insights into IGT learning and have important implications for understanding the neural mechanisms of “sleeping on” a decision.  相似文献   

10.
The Iowa Gambling Task (IGT) is a sequential learning task in which participants develop a tendency towards advantageous options arising from the outcomes associated with their previous decisions. The role of working memory in this complex task has been largely debated in the literature. On one hand, low working memory resources lead to a decrease in the number of advantageous decisions and make a significant part of participants unable to report explicitly which options are the most profitable. On the other hand, several studies have shown no contribution of working memory to the IGT decision patterns. In order to investigate this apparent incompatibility of results, we used an individual differences approach, which has proven an effective method to investigate the role of working memory in cognition. We compared the IGT decision patterns of participants as a function of their working memory capacity (WMC). As expected, contrary to low WMC participants, high WMC participants developed a tendency towards advantageous decisions. These findings lead us to discuss the role of WMC in decision making tasks.  相似文献   

11.
Psychopathic personality traits are linked with selfish and non-cooperative responses during economical decision making games. However, the possibility that these responses may vary when responding to members of the in-group and the out-group has not yet been explored. We aimed to examine the effects of primary (selfish, uncaring) and secondary (impulsive, irresponsible) psychopathic personality traits on the responses of non-offending participants to the in-group and the out-group (defined in terms of affiliation to a UK University) across a series of economical decision making games. We asked a total of 60 participants to act as the proposer in both the dictator game and the ultimatum game. We found that across both tasks, those who scored highly for secondary psychopathic traits showed an elevated intergroup bias, making more generous offers toward members of the in-group relative to the out-group. An exaggerated intergroup bias may therefore represent a motivational factor for the antisocial behavior of those with elevated secondary psychopathic traits.  相似文献   

12.
Impulsivity, i.e. irresistibility in the execution of actions, may be prominent in Parkinson''s disease (PD) patients who are treated with dopamine precursors or dopamine receptor agonists. In this study, we combine clinical investigations with computational modeling to explore whether impulsivity in PD patients on medication may arise as a result of abnormalities in risk, reward and punishment learning. In order to empirically assess learning outcomes involving risk, reward and punishment, four subject groups were examined: healthy controls, ON medication PD patients with impulse control disorder (PD-ON ICD) or without ICD (PD-ON non-ICD), and OFF medication PD patients (PD-OFF). A neural network model of the Basal Ganglia (BG) that has the capacity to predict the dysfunction of both the dopaminergic (DA) and the serotonergic (5HT) neuromodulator systems was developed and used to facilitate the interpretation of experimental results. In the model, the BG action selection dynamics were mimicked using a utility function based decision making framework, with DA controlling reward prediction and 5HT controlling punishment and risk predictions. The striatal model included three pools of Medium Spiny Neurons (MSNs), with D1 receptor (R) alone, D2R alone and co-expressing D1R-D2R. Empirical studies showed that reward optimality was increased in PD-ON ICD patients while punishment optimality was increased in PD-OFF patients. Empirical studies also revealed that PD-ON ICD subjects had lower reaction times (RT) compared to that of the PD-ON non-ICD patients. Computational modeling suggested that PD-OFF patients have higher punishment sensitivity, while healthy controls showed comparatively higher risk sensitivity. A significant decrease in sensitivity to punishment and risk was crucial for explaining behavioral changes observed in PD-ON ICD patients. Our results highlight the power of computational modelling for identifying neuronal circuitry implicated in learning, and its impairment in PD. The results presented here not only show that computational modelling can be used as a valuable tool for understanding and interpreting clinical data, but they also show that computational modeling has the potential to become an invaluable tool to predict the onset of behavioral changes during disease progression.  相似文献   

13.
What kind of strategies subjects follow in various behavioral circumstances has been a central issue in decision making. In particular, which behavioral strategy, maximizing or matching, is more fundamental to animal''s decision behavior has been a matter of debate. Here, we prove that any algorithm to achieve the stationary condition for maximizing the average reward should lead to matching when it ignores the dependence of the expected outcome on subject''s past choices. We may term this strategy of partial reward maximization “matching strategy”. Then, this strategy is applied to the case where the subject''s decision system updates the information for making a decision. Such information includes subject''s past actions or sensory stimuli, and the internal storage of this information is often called “state variables”. We demonstrate that the matching strategy provides an easy way to maximize reward when combined with the exploration of the state variables that correctly represent the crucial information for reward maximization. Our results reveal for the first time how a strategy to achieve matching behavior is beneficial to reward maximization, achieving a novel insight into the relationship between maximizing and matching.  相似文献   

14.
In humans, training in which good performance is rewarded or bad performance punished results in transient behavioral improvements. The relative effects of reward and punishment on consolidation and long-term retention, critical behavioral stages for successful learning, are not known. Here, we investigated the effects of reward and punishment on these different stages of human motor skill learning. We studied healthy subjects who trained on a motor task under rewarded, punished, or neutral control conditions. Performance was tested before and immediately, 6 hr, 24 hr, and 30 days after training in the absence of reward or punishment. Performance improvements immediately after training were comparable in the three groups. At 6 hr, the rewarded group maintained performance gains, whereas the other two groups experienced significant forgetting. At 24 hr, the reward group showed significant offline (posttraining) improvements, whereas the other two groups did not. At 30 days, the rewarded group retained the gains identified at 24 hr, whereas the other two groups experienced significant forgetting. We conclude that training under rewarded conditions is more effective than training under punished or neutral conditions in eliciting lasting motor learning, an advantage driven by offline memory gains that persist over time.  相似文献   

15.

Introduction

Neuroscience evidence suggests that adolescent obesity is linked to brain dysfunctions associated with enhanced reward and somatosensory processing and reduced impulse control during food processing. Comparatively less is known about the role of more stable brain structural measures and their link to personality traits and neuropsychological factors on the presentation of adolescent obesity. Here we aimed to investigate regional brain anatomy in adolescents with excess weight vs. lean controls. We also aimed to contrast the associations between brain structure and personality and cognitive measures in both groups.

Methods

Fifty-two adolescents (16 with normal weight and 36 with excess weight) were scanned using magnetic resonance imaging and completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ), the UPPS-P scale, and the Stroop task. Voxel-based morphometry (VBM) was used to assess possible between-group differences in regional gray matter (GM) and to measure the putative differences in the way reward and punishment sensitivity, impulsivity and inhibitory control relate to regional GM volumes, which were analyzed using both region of interest (ROI) and whole brain analyses. The ROIs included areas involved in reward/somatosensory processing (striatum, somatosensory cortices) and motivation/impulse control (hippocampus, prefrontal cortex).

Results

Excess weight adolescents showed increased GM volume in the right hippocampus. Voxel-wise volumes of the second somatosensory cortex (SII) were correlated with reward sensitivity and positive urgency in lean controls, but this association was missed in excess weight adolescents. Moreover, Stroop performance correlated with dorsolateral prefrontal cortex volumes in controls but not in excess weight adolescents.

Conclusion

Adolescents with excess weight have structural abnormalities in brain regions associated with somatosensory processing and motivation.  相似文献   

16.
Post-traumatic stress disorder (PTSD) symptoms include behavioral avoidance which is acquired and tends to increase with time. This avoidance may represent a general learning bias; indeed, individuals with PTSD are often faster than controls on acquiring conditioned responses based on physiologically-aversive feedback. However, it is not clear whether this learning bias extends to cognitive feedback, or to learning from both reward and punishment. Here, male veterans with self-reported current, severe PTSD symptoms (PTSS group) or with few or no PTSD symptoms (control group) completed a probabilistic classification task that included both reward-based and punishment-based trials, where feedback could take the form of reward, punishment, or an ambiguous “no-feedback” outcome that could signal either successful avoidance of punishment or failure to obtain reward. The PTSS group outperformed the control group in total points obtained; the PTSS group specifically performed better than the control group on reward-based trials, with no difference on punishment-based trials. To better understand possible mechanisms underlying observed performance, we used a reinforcement learning model of the task, and applied maximum likelihood estimation techniques to derive estimated parameters describing individual participants’ behavior. Estimations of the reinforcement value of the no-feedback outcome were significantly greater in the control group than the PTSS group, suggesting that the control group was more likely to value this outcome as positively reinforcing (i.e., signaling successful avoidance of punishment). This is consistent with the control group’s generally poorer performance on reward trials, where reward feedback was to be obtained in preference to the no-feedback outcome. Differences in the interpretation of ambiguous feedback may contribute to the facilitated reinforcement learning often observed in PTSD patients, and may in turn provide new insight into how pathological behaviors are acquired and maintained in PTSD.  相似文献   

17.
Adult attachment style refers to individual personality traits that strongly influence emotional bonds and reactions to social partners. Behavioral research has shown that adult attachment style reflects profound differences in sensitivity to social signals of support or conflict, but the neural substrates underlying such differences remain unsettled. Using functional magnetic resonance imaging (fMRI), we examined how the three classic prototypes of attachment style (secure, avoidant, anxious) modulate brain responses to facial expressions conveying either positive or negative feedback about task performance (either supportive or hostile) in a social game context. Activation of striatum and ventral tegmental area was enhanced to positive feedback signaled by a smiling face, but this was reduced in participants with avoidant attachment, indicating relative impassiveness to social reward. Conversely, a left amygdala response was evoked by angry faces associated with negative feedback, and correlated positively with anxious attachment, suggesting an increased sensitivity to social punishment. Secure attachment showed mirror effects in striatum and amygdala, but no other specific correlate. These results reveal a critical role for brain systems implicated in reward and threat processing in the biological underpinnings of adult attachment style, and provide new support to psychological models that have postulated two separate affective dimensions to explain these individual differences, centered on the ventral striatum and amygdala circuits, respectively. These findings also demonstrate that brain responses to face expressions are not driven by facial features alone but determined by the personal significance of expressions in current social context. By linking fundamental psychosocial dimensions of adult attachment with brain function, our results do not only corroborate their biological bases but also help understand their impact on behavior.  相似文献   

18.
This study investigated whether somatic markers mediate the effect of serotonin transporter genotype on Iowa Gambling Task (IGT) performance. Participants (N = 135) were genotyped for the insertion/deletion and single-nucleotide (rs25531) polymorphisms in the promoter region of the serotonin transporter gene (5-HTTLPR). The results of mediation analyses indicated that skin conductance responses that anticipated IGT card selections partially (i.e. 42% of the total effect) mediated the effect of genotype on IGT performance. In comparison with high-functioning 5-HTTLPR genotypes, the low-functioning genotypes were associated with higher total IGT scores. This suggests that the higher synaptic availability of serotonin, associated with the low-functioning 5-HTTLPR genotypes, may confer differential susceptibility to decision making under risk, and that almost half of this effect is explained by facilitated somatic markers during IGT.  相似文献   

19.
Decision making under risk involves balancing the potential of gaining rewards with the possibility of loss and/or punishment. Tolerance to risk varies between individuals. Understanding the biological basis of risk tolerance is pertinent because excessive tolerance contributes to adverse health and safety outcomes. Yet, not much is known about biological factors mediating inter-individual variability in this regard. We investigate if latent Toxoplasma gondii infection can cause risk tolerance. Using a rodent model of the balloon analogous risk task, we show that latent T. gondii infection leads to a greater tolerance of reward forfeiture. Furthermore, effects of the infection on risk can be recapitulated with testosterone supplementation alone, demonstrating that greater testosterone synthesis by the host post-infection is sufficient to change risk tolerance. T. gondii is a frequent parasite of humans and animals. Thus, the infection status can potentially explain some of the inter-individual variability in the risky decision making.  相似文献   

20.
When choosing between immediate and temporally delayed goods, people sometimes decide disadvantageously. Here, we aim to provide process-level insight into differences between individually determined advantageous and disadvantageous choices. Participants played a computer game, deciding between two different rewards of varying size and distance by moving an agent towards the chosen reward. We calculated individual models of advantageous choices and characterized the decision process by analyzing mouse movements. The larger amount of participants’ choices was classified as advantageous and the disadvantageous choices were biased towards choosing sooner/smaller rewards. The deflection of mouse movements indicated more conflict in disadvantageous choices compared with advantageous choices when the utilities of the options differed clearly. Further process oriented analysis revealed that disadvantageous choices were biased by a tendency for choice-repetition and an undervaluation of the value information in favour of the delay information, making rather simple choices harder than could be expected from the properties of the decision situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号