首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
Mechanisms of long-distance seed dispersal   总被引:4,自引:0,他引:4  
Growing recognition of the importance of long-distance dispersal (LDD) of plant seeds for various ecological and evolutionary processes has led to an upsurge of research into the mechanisms underlying LDD. We summarize these findings by formulating six generalizations stating that LDD is generally more common in open terrestrial landscapes, and is typically driven by large and migratory animals, extreme meteorological phenomena, ocean currents and human transportation, each transporting a variety of seed morphologies. LDD is often associated with unusual behavior of the standard vector inferred from plant dispersal morphology, or mediated by nonstandard vectors. To advance our understanding of LDD, we advocate a vector-based research approach that identifies the significant LDD vectors and quantifies how environmental conditions modify their actions.  相似文献   

2.
Long-distance dispersal (LDD) of seeds and pollen shapes the spatial dynamics of plant genotypes, populations and communities. Quantifying LDD is thus important for predicting the future dynamics of plants exposed to environmental changes. However, environmental changes can also alter the behaviour of LDD vectors: for instance, increasing air temperature may enhance atmospheric instability, thereby altering the turbulent airflow that transports seed and pollen. Here, we investigate temperature effects on wind dispersal in a boreal forest using a 10-year time series of micrometeorological measurements and a Lagrangian stochastic model for particle transport. For a wide range of dispersal and life history types, we found positive relations between air temperature and LDD. This translates into a largely consistent positive effect of +3°C warming on predicted LDD frequencies and spread rates of plants. Relative increases in LDD frequency tend to be higher for heavy-seeded plants, whereas absolute increases in LDD and spread rates are higher for light-seeded plants for which wind is often an important dispersal vector. While these predicted increases are not sufficient to compensate forecasted range losses and environmental changes can alter plant spread in various ways, our results generally suggest that warming can promote wind-driven movements of plant genotypes and populations in boreal forests.  相似文献   

3.
Recent research suggests that non-additive genotypic effects may play an important role in the establishment success of invasive species. However, most empirical data for these inferences come from greenhouse experiments. Only recently has researchers tested non-additive genotypic effects and establishment success of invasive alien species under field conditions. Here we give a brief overview of this research and also carefully consider data from the first publication, to our knowledge, to report on non-additive genotypic effects on invasion success under field conditions. We identify some shortcomings in this important study and make suggestions for future research aimed at better understanding the contributions of non-additive genotypic effects to establishment success and invasion.  相似文献   

4.
Dispersal is a fundamental ecological process, yet demonstrating the occurrence and importance of long‐distance dispersal (LDD) remains difficult, having rarely been examined for widespread, non‐coastal plants. To address this issue, we integrated phylogenetic, molecular dating, biogeographical, ecological, seed biology and oceanographic data for the inland Urticaceae. We found that Urticaceae originated in Eurasia c. 69 Ma, followed by ≥ 92 LDD events between landmasses. Under experimental conditions, seeds of many Urticaceae floated for > 220 days, and remained viable after 10 months in seawater, long enough for most detected LDD events, according to oceanographic current modelling. Ecological traits analyses indicated that preferences for disturbed habitats might facilitate LDD. Nearly half of all LDD events involved dioecious taxa, so population establishment in dioecious Urticaceae requires multiple seeds, or occasional selfing. Our work shows that seawater LDD played an important role in shaping the geographical distributions of Urticaceae, providing empirical evidence for Darwin's transoceanic dispersal hypothesis.  相似文献   

5.

Background and Aims

The ability of plant lineages to reach all continents contributes substantially to their evolutionary success. This is exemplified by the Poaceae, one of the most successful angiosperm families, in which most higher taxa (tribes, subfamilies) have global distributions. Due to the old age of the ocean basins relative to the major angiosperm radiations, this is only possible by means of long-distance dispersal (LDD), yet the attributes of lineages with successful LDD remain obscure. Polyploid species are over-represented in invasive floras and in the previously glaciated Arctic regions, and often have wider ecological tolerances than diploids; thus polyploidy is a candidate attribute of successful LDD.

Methods

The link between polyploidy and LDD was explored in the globally distributed grass subfamily Danthonioideae. An almost completely sampled and well-resolved species-level phylogeny of the danthonioids was used, and the available cytological information was assembled. The cytological evolution in the clade was inferred using maximum likelihood (ML) as implemented in ChromEvol. The biogeographical evolution in the clade was reconstructed using ML and Bayesian approaches.

Key Results

Numerous increases in ploidy level are demonstrated. A Late Miocene–Pliocene cycle of polyploidy is associated with LDD, and in two cases (the Australian Rytidosperma and the American Danthonia) led to secondary polyploidy. While it is demonstrated that successful LDD is more likely in polyploid than in diploid lineages, a link between polyploidization events and LDD is not demonstrated.

Conclusions

The results suggest that polyploids are more successful at LDD than diploids, and that the frequent polyploidy in the grasses might have facilitated the extensive dispersal among continents in the family, thus contributing to their evolutionary success.  相似文献   

6.
Long-distance dispersal (LDD) events, although rare for most plant species, can strongly influence population and community dynamics. Animals function as a key biotic vector of seeds and thus, a mechanistic and quantitative understanding of how individual animal behaviors scale to dispersal patterns at different spatial scales is a question of critical importance from both basic and applied perspectives. Using a diffusion-theory based analytical approach for a wide range of animal movement and seed transportation patterns, we show that the scale (a measure of local dispersal) of the seed dispersal kernel increases with the organisms' rate of movement and mean seed retention time. We reveal that variations in seed retention time is a key determinant of various measures of LDD such as kurtosis (or shape) of the kernel, thinkness of tails and the absolute number of seeds falling beyond a threshold distance. Using empirical data sets of frugivores, we illustrate the importance of variability in retention times for predicting the key disperser species that influence LDD. Our study makes testable predictions linking animal movement behaviors and gut retention times to dispersal patterns and, more generally, highlights the potential importance of animal behavioral variability for the LDD of seeds.  相似文献   

7.
Understanding how biotic interactions impact plant community assembly is a long‐standing goal in ecology, but studies of biotic interactions in this context are often limited to macro‐interactions. In this issue of Journal of Vegetation Science, Sonkoly et al. synthesize current knowledge regarding the impact of cyanobacteria on terrestrial plants and show that cyanotoxins can alter germination and establishment success in grassland communities.  相似文献   

8.
种子的长距离风传播模型研究进展   总被引:15,自引:1,他引:15       下载免费PDF全文
 植物种子的长距离传播在物种迁移、生物入侵、保护生物学等领域有重要的生态和进化意义。种子传播有很多方式,开阔草原等地区的草本植物和许多热带和温带的树木都是通过风传播种子的。风传播的方式最适合进行种子长距离传播现象的模拟研究。种子的风传播模型是传播生态研究的一个重要领域,尤其是种子的长距离风传播模型,对于外来入侵植物的扩散和破碎化景观中植物种群的基因交流等生态过程研究举足轻重,然而国内鲜见这方面的研究成果。本文综述了种子长距离风传播现象研究的背景和意义,分析了风传播种子模型的基本形式和构成原理,并分别就现象模型和机理模型的相关研究进展进行了总结,同时指出了未来发展的几个重要方向。种子的风传播模型可以分为现象模型和机理模型两类,现象模型按种子传播核心的形式包括短尾模型、偏峰长尾模型和混合传播核心模型,后两者对于长距离传播数据的模拟可以取得很好的效果。机理模型按照模拟机制可分为欧拉对流扩散模型和拉格郎日随机模型两类。本文重点介绍了种子的长距离风传播现象的形成机理和两类机理模型的参数构成和处理方式。适合种子脱落的天气和适合传播的天气的同步性可能是形成种子长距离风传播的一个重要前提,林缘和地表存在的上升气流及大风和暴风中形成的速度梯度都可能对于种子的长距离传播有重要的作用。机理模型的操作因子主要包括生物方面的因子、气象方面的因子和地形方面的因子。同时对目前几个应用比较成功的机理模型进行了简要的介绍和评价,包括倾斜羽毛模型、对流-扩散-下降模型、无掩蔽模型、背景模型、WINDISPER及其改进模型和PAPPUS模型。最后指出,目前在风传播种子的长距离模型研究中,对草本植物种子的传播模拟的投入明显不如树木种子的长距离传播模拟,对于破碎化景观中种子长距离的风传播的研究还存在很大的差距,而对提高机理模型预测能力的高分辨率物理环境数据输入技术的需求则为多学科交叉提供了很好的机会。  相似文献   

9.
Plant species are shifting their ranges in response to global climate change, thus intensifying the need to predict such changes accurately. As the environmental requirements controlling plant distribution act differently at each developmental stage, there is a need to acquire a demographic-specific understanding of the factors which determine these distributions. Here we investigated the germination niche of two common savanna species Acacia nigrescens and Colophospermum mopane, with the aims to disentangle the direct and indirect effects of temperature on seed germination and establishment and to explore the impact of higher temperatures on the establishment success of savanna trees. Under laboratory conditions, we used thermal gradient plates to determine the thermal germination niche of both species, and a water stress experiment was conducted on C. mopane to account for water–temperature interactions. Using these data we parameterised a soil-moisture model to determine germination and establishment success under field conditions at current and future temperatures (+4 °C). Based on this model, higher future temperatures will not limit germination directly, but they will reduce the number of germination events by reducing the time window of suitable available soil water. Conversely, warmer conditions will accelerate the rate of radicle extension and increase the frequency of seedling establishment events. An additional advantage of higher temperatures is that fewer seeds will germinate, resulting in slower seed bank depletion when successful seedling establishment events do occur.  相似文献   

10.
The legacy of agricultural land use can have widespread and persistent effects on contemporary landscapes. Although agriculture can lead to persistent changes in soil characteristics and plant communities, it remains unclear whether historic agricultural land use can alter the likelihood of contemporary biological invasions. To understand how agricultural land-use history might interact with well-known drivers of invasion, we conducted factorial manipulations of soil disturbance and resource additions within non-agricultural remnant sites and post-agricultural sites invaded by two non-native Lespedeza species. Our results reveal that variation in invader success can depend on the interplay of historic land use and contemporary processes: for both Lespedeza species, establishment was greater in remnant sites, but soil disturbance enhanced establishment irrespective of land-use history, demonstrating that contemporary processes can help to overcome legacy constraints on invader success. In contrast, additions of resources known to facilitate seedling recruitment (N and water) reduced invader establishment in post-agricultural but not in remnant sites, providing evidence that interactions between historic and contemporary processes can also limit invader success. Our findings thus illustrate that a consideration of historic land use may help to clarify the often contingent responses of invasive plants to known determinants of invasibility. Moreover, in finding significantly greater soil compaction at post-agricultural sites, our study provides a putative mechanism for historic land-use effects on contemporary invasive plant establishment. Our work suggests that an understanding of invasion dynamics requires knowledge of anthropogenic events that often occur decades before the introduction of invasive propagules.  相似文献   

11.
Long-distance dispersal (LDD) of plant seeds by wind is affected by functional traits of the species, specifically seed terminal velocity and height of seed release above the vegetation cover (HAC), as well as by the meteorological parameters wind speed and vertical turbulence. The relative importance of these parameters is still under debate and the importance of their variability in vegetation types, sites and years has only rarely been quantified. To address these topics, we performed simulation studies for different vegetation types, sites, years and plant species with PAPPUS, a process based trajectory model. We found that LDD (measured in terms of migration rates) was higher in forests compared to open landscapes. Forests also showed greater between-year variability in LDD. Terminal velocity had an effect on LDD in both vegetation types, while the effect of HAC was significant only in the open landscape. We found considerable differences in how vertical turbulence and wind speed affect LDD between species and vegetation types: In the open landscape the strength of the positive relationship between vertical turbulence and LDD generally decreases with terminal velocity, whereas it increases in forests. The strength of the predominantly positive effect of wind speed on LDD increases with terminal velocity in both vegetation types, while in forests we found even negative relationships for species with low terminal velocity. Our results generally suggest that the effects of vertical turbulence and wind speed on LDD by wind diverge for species with different functional traits as well as in different vegetation types.  相似文献   

12.
Seed dispersal and mycorrhizal associations are key mutualisms for the functioning and regeneration of plant communities; however, these processes have seldom been explored together. We hypothesised that obligatory mycorrhizal plants will be less likely to have long‐distance dispersal (LDD) syndromes since the probability of finding suitable mycorrhizal partners is likely to decrease with distance to the mother plant. We contrasted the mycorrhizal status and LDD syndromes for 1960 European plant species, using phylogenetically corrected log‐linear models. Contrary to our expectation, having specialised structures for LDD is more frequent in obligate mycorrhizal plants than in non‐mycorrhizal plants, revealing that lack of compatible mutualists does not constrain investment in LDD structures in the European Flora. Ectomycorrhizal plants associated with wind‐dispersing fungi are also more likely to have specialised structures for wind dispersal. Habitat specificity and narrower niche of non‐mycorrhizal plants might explain the smaller investment in specialised structures for seed dispersal.  相似文献   

13.
Plants engage in complex multipartite interactions with mutualists and antagonists, but these interactions are rarely included in studies that explore plant invasiveness. When considered in isolation, we know that beneficial microbes can enhance an exotic plant’s invasive ability and that herbivorous insects often decrease an exotic plant’s likeliness of success. However, the effect of these partners on plant fitness has not been well characterized when all three species coevolve. We use computational evolutionary modeling of a trait-based system to test how microbes and herbivores simultaneously coevolving with an invading plant affect the invaders’ probability of becoming established. Specifically, we designed a model that explores how a beneficial microbe would influence the outcome of an interaction between a plant and herbivore. To model novel interactions, we included a phenotypic trait shared by each species. Making this trait continuous and selectable allows us to explore how trait similarities between coevolving plants, herbivores and microbes affect fitness. Using this model, we answer the following questions: (1) Can a beneficial plant-microbe interaction influence the evolutionary outcome of antagonistic interactions between plants and herbivores? (2) How does the initial trait similarity between interacting organisms affect the likelihood of plant survival in novel locations? (3) Does the effect of tripartite interactions on the invasion success of a plant depend on whether organisms interact through trait similarity [Enemy Release Hypothesis (ERH)] or dissimilarity (Biotic Resistance Hypothesis)? We found that it was much more difficult for plants to invade under the ERH but that beneficial microbes increase the probability of plant survival in a novel range under both hypotheses. To our knowledge, this model is the first to use tripartite interactions to explore novel species introductions. It represents a step towards gaining a better understanding of the factors influencing establishment of exotic species to prevent future invasions.  相似文献   

14.
Improving the realism of spatially explicit demographic models is important for better inferring the history of past populations and for understanding the genetic bases of adaptation and speciation. One particular type of demographic event to take into account is long-distance dispersal (LDD). The goals of this study are to explore the impact of various levels of LDD on genetic diversity and to show to what extent LDD levels can be correctly inferred from multilocus data sets using an approximate Bayesian computation approach. We therefore incorporated LDD into a 2D stepping stone forward simulation framework coupled to a coalescent backward simulation step to generate genetic diversity at 100 microsatellite markers under various demographic conditions relevant to recent human evolution. Our results confirm that LDD considerably increases genetic diversity within demes and decreases levels of diversity between demes. By controlling the spatial occurrence of LDD, it appears that LDD events occurring during a phase of range expansion into new territories are more important in maintaining genetic diversity than those occurring in the wake of the expansion or when colonization is over. We also show that it is possible to infer whether LDD has occurred during a range expansion, but our results suggest that one can only approximately estimate the extent of LDD based on genetic summary statistics.  相似文献   

15.
Biogeographic dispersal is supported by numerous phylogenetic results. In particular, transoceanic dispersal, rather than vicariance, is suggested for some plant lineages despite current long distances between America and Europe. However, few studies on the biogeographic history of plants have also studied the role of diaspore syndromes in long‐distance dispersal (LDD). Species of the tribe Omphalodeae (Boraginaceae) offer a suitable study system because the species have a wide variety of diaspore traits related to LDD and different lineages conform to patched worldwide distributions on three distant continents (Europe, America and New Zealand). Our aim is to reconstruct the biogeographical history of the Omphalodeae and to investigate the role of diaspore traits favoring LDD and current geographic distributions. To this end, a time‐calibrated phylogeny with 29 of 32 species described for Omphalodeae was reconstructed using biogeographical analyses (BioGeoBEARS, Lagrange) and models (DEC and DIVA) under different scenarios of land connectivity. Character‐state reconstruction (SIMMAP) and diversification rate estimations of the main lineages were also performed. The main result is that epizoochorous traits have been the ancestral state of LDD syndromes in most clades. An early diversification age of the tribe is inferred in the Western Mediterranean during late Oligocene. Colonization of the New World by Omphalodeae, followed by fast lineage differentiation, took place sometime in the Oligocene‐Miocene boundary, as already inferred for other angiosperm genera. In contrast, colonization of remote islands (New Zealand, Juan Fernández) occurred considerably later in the Miocene‐Pliocene boundary.  相似文献   

16.
Two issues that have captured the attention of tropical plant evolutionary biologists in recent years are the relative role of long distance dispersal (LDD) over vicariance in determining plant distributions and debate about the extent that Quaternary climatic changes affected tropical species. Propagules of some mangrove species are assumed to be capable of LDD due to their ability to float and survive for long periods of time in salt water. Mangrove species responded to glaciations with a contraction of their range. Thus, widespread mangrove species are an ideal system to study LDD and recolonization in the tropics. We present phylogenetic and phylogeographic analyses based on internal transcribed spacers region (ITS) sequences, chloroplast DNA (cpDNA), and amplified fragment length polymorphisms (AFLPs) of genomic DNA that demonstrate recent LDD across the Atlantic, rejecting the hypothesis of vicariance for the widespread distribution of the black mangrove ( Avicennia germinans) . Northern latitude populations likely became extinct during the late Quaternary due to frosts and aridification; these locations were recolonized afterward from southern populations. In some low latitude regions populations went extinct or were drastically reduced during the Quaternary because of lack of suitable habitat as sea levels changed. Our analyses show that low latitude Pacific populations of A. germinans harbor more diversity and reveal deeper divergence than Atlantic populations. Implications for our understanding of phylogeography of tropical species are discussed.  相似文献   

17.
The success of using Populus and Salix for phytoremediation has prompted further use of leachate as a combination of irrigation and fertilization for the trees. A common protocol for such efforts has been to utilize a limited number of readily-available genotypes with decades of deployment in other applications, such as fiber or windbreaks. However, it may be possible to increase phytoremediation success with proper genotypic screening and selection, followed by the field establishment of clones that exhibited favorable potential for cleanup of specific contaminants. There is an overwhelming need for testing and subsequent deployment of diverse Populus and Salix genotypes, given current availability of clonal material and the inherent genetic variation among and within these genera. Therefore, we detail phyto-recurrent selection, a method that consists of revising and combining crop and tree improvement protocols to meet the objective of utilizing superior Populus and Salix clones for remediation applications. Although such information is lacking for environmental clean-up technologies, centuries of plant selection success in agronomy, horticulture, and forestry validate the need for similar approaches in phytoremediation. We bridge the gap between these disciplines by describing project development, clone selection, tree establishment, and evaluation of success metrics in the context of their importance to utilizing trees for phytoremediation.  相似文献   

18.
The enemy release hypothesis (ERH) of plant invasion asserts that natural enemies limit populations of invasive plants more strongly in native ranges than in non‐native ranges. Despite considerable empirical attention, few studies have directly tested this idea, especially with respect to generalist herbivores. This knowledge gap is important because escaping the effects of generalists is a critical aspect of the ERH that may help explain successful plant invasions. Here, we used consumer exclosures and seed addition experiments to contrast the effects of granivorous rodents (an important guild of generalists) on the establishment of cheatgrass (Bromus tectorum) in western Asia, where cheatgrass is native, versus the Great Basin Desert, USA, where cheatgrass is exotic and highly invasive. Consistent with the ERH, rodent foraging reduced cheatgrass establishment by nearly 60% in western Asia but had no effect in the Great Basin. This main result corresponded with a region‐specific foraging pattern: rodents in the Great Basin but not western Asia generally avoided seeds from cheatgrass relative to seeds from native competitors. Our results suggest that enemy release from the effects of an important guild of generalists may contribute to the explosive success of cheatgrass in the Great Basin. These findings corroborate classic theory on enemy release and expand our understanding of how generalists can influence the trajectory of exotic plant invasions.  相似文献   

19.
Humans are key vectors in the spread and establishment of aquatic invasive species (AIS), and human behavior can exacerbate or help prevent further spread of non-native species. Therefore, stakeholders’ knowledge is critical to preventing establishment of AIS. However, stakeholders’ AIS knowledge in prairie lakes remains poorly understood. We used a survey questionnaire in Saskatchewan, Canada, to assess the state of AIS knowledge, identify predictors of knowledge, and optimize management strategies. Statistical analyses of the responses of 440 participants indicated a generally low level of AIS knowledge, suggesting low communication success. Respondents were generally more aware of non-native fishes than plants. Of concern was the observation of substantial knowledge gaps regarding non-native mussels and important preventative behaviors that may have devastating ecological, social, and economic consequences if left unaddressed. Better understanding of AIS issues was significantly associated with several trans-situational (age, sex and education), situational (recreational purpose and using multiple lakes), and lake-related knowledge (awareness of eutrophication) predictors. Exploitation of these predictors is recommended to improve effectiveness of outreach and communication efforts. Specifically, we propose that management strategies focus on improving communications by streamlining outreach messages, targeting low-knowledge groups (e.g., swimmers, cabin owners), and expanding education campaigns.  相似文献   

20.
The extrinsic determinants hypothesis emphasizes the essential role of environmental heterogeneity in species’ colonization. Consequently, high resident species diversity can increase community susceptibility to colonizations because good habitats may support more species that are functionally similar to colonizers. On the other hand, colonization success is also likely to depend on species traits. We tested the relative importance of environmental characteristics and species traits in determining colonization success using census data of 587 vascular plant species collected about 70 yr apart from 471 islands in the archipelago of SW Finland. More specifically, we explored potential new colonization as a function of island properties (e.g. location, area, habitat diversity, number of resident species per unit area), species traits (e.g. plant height, life-form, dispersal vector, Ellenberg indicator values, association with human impact), and species’ historical distributions (number of inhabited islands, nearest occurrence). Island properties and species’ historical distributions were more effective than plant traits in explaining colonization outcomes. Contrary to the extrinsic determinants hypothesis, colonization success was neither associated with resident species diversity nor habitat diversity per se, although colonization was lowest on sparsely vegetated islands. Our findings lead us to propose that while plant traits related to dispersal and establishment may enhance colonization, predictions of plant colonizations primarily require understanding of habitat properties and species’ historical distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号