首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural killer (NK) cells represent a highly specialized lymphoid population characterized by a potent cytolytic activity against tumor or virally infected cells. Their function is finely regulated by a series of inhibitory or activating receptors. The inhibitory receptors, specific for major histocompatibility complex (MHC) class I molecules, allow NK cells to discriminate between normal cells and cells that have lost the expression of MHC class I (e.g., tumor cells). The major receptors responsible for NK cell triggering are NKp46, NKp30, NKp44 and NKG2D. The NK-mediated lysis of tumor cells involves several such receptors, while killing of dendritic cells involves only NKp30. The target-cell ligands recognized by some receptors have been identified, but those to which major receptors bind are not yet known. Nevertheless, functional data suggest that they are primarily expressed on cells upon activation, proliferation or tumor transformation. Thus, the ability of NK cells to lyse target cells requires both the lack of surface MHC class I molecules and the expression of appropriate ligands that trigger NK receptors.  相似文献   

2.
NK cells play an important role in the early immune response to cancer. The NKp44 activating receptor is the only natural cytotoxicity receptor that is expressed exclusively by primate NK cells, yet its cellular ligands remain largely unknown. Proliferating cell nuclear Ag (PCNA) is overexpressed in cancer cells. In this study, we show that the NKp44 receptor recognizes PCNA. Their interaction inhibits NK cell function through NKp44/ITIM. The physical interaction of NKp44 and PCNA is enabled by recruitment of target cell PCNA to the NK immunological synapse. We demonstrate that PCNA promotes cancer survival by immune evasion through inhibition of NKp44-mediated NK cell attack.  相似文献   

3.
The killing by natural killer (NK) cells is regulated by inhibitory, costimulatory, and activating receptors. The inhibitory receptors recognize mainly major histocompatibility complex (MHC) class I molecules, while the activating NK receptors recognize stress-induced ligands and viral products. Thus, changes in the expression of the various inhibitory and activating ligands will determine whether target cells will be killed or protected. Here, we demonstrate that after influenza virus infection the binding of the two NK inhibitory receptors, KIR2DL1 and the LIR1, to the infected cells is specifically increased. The increased binding occurs shortly after the influenza virus infection, prior to the increased recognition of the infected cells by the NK activating receptor, NKp46. We also elucidate the mechanism responsible for this effect and demonstrate that, after influenza virus infection, MHC class I proteins redistribute on the cell surface and accumulate in the lipid raft microdomains. Such redistribution allows better recognition by the NK inhibitory receptors and consequently increases resistance to NK cell attack. In contrast, T-cell activity was not influenced by the redistribution of MHC class I proteins. Thus, we present here a novel mechanism, developed by the influenza virus, of inhibition of NK cell cytotoxicity, through the reorganization of MHC class I proteins on the cell surface.  相似文献   

4.
NKp44 (NCR2) is a member of the natural cytotoxicity receptor (NCR) family that is expressed on activated human NK cells. We dissected structural attributes of NKp44 to determine their contributions to receptor function. Our results demonstrate that surface expression and NK cell activation by NKp44 is mediated through noncovalent association with the immunoreceptor tyrosine-based activation motif-containing protein, DAP12. Physical linkage to DAP12 requires lysine-183 in the NKp44 transmembrane domain. Intriguingly, the cytoplasmic domain of NKp44 also contains a sequence that matches the immunoreceptor tyrosine-based inhibitory motif (ITIM) consensus. By expressing a chimeric receptor in an NK-like cell line, we found that this ITIM-like motif from NKp44 lacks inhibitory capacity in a redirected cytotoxicity assay. The NKp44 cytoplasmic tyrosine was efficiently phosphorylated in the chimeric receptor upon treating the cells with pervanadate, but it was unable to recruit ITIM-binding negative effector phosphatases. We also generated NK-like cell lines expressing epitope-tagged wild-type or tyrosine to phenylalanine mutant (Y238F) versions of NKp44 and compared their capacities to induce activation marker expression, promote IFN-gamma production, or stimulate target cell cytotoxicity. We did not detect any tyrosine-dependent reduction or enhancement of NK cell activation through wild-type vs. Y238F mutant NKp44. Finally, the cytoplasmic tyrosine-based sequence did not provide a docking site for the AP-2 clathrin adaptor, nor did it potentiate receptor internalization. In summary, all activating properties and surface expression of NKp44 are mediated through its association with DAP12, and the putative ITIM in the NKp44 cytoplasmic domain does not appear to attenuate activating function.  相似文献   

5.
Modulation of inhibitory and activating natural killer (NK) receptor ligands on tumor cells represents a promising therapeutic approach against cancer, including multiple myeloma (MM). Human leukocyte antigen (HLA) class I molecules, the NK cell inhibitory killer cell immunoglobulin-like receptor (KIR) ligands, are critical determinants of NK cell activity. Proteasome inhibitors have demonstrated significant anti-myeloma activity in MM patients. In this study, we evaluated the effect of proteasome inhibitors on the surface expression of class I in human MM cells. We found that proteasome inhibitors downregulated surface expression of class I in a dose- and time-dependent manner in MM cell line and patient MM cells. No significant changes in the expression of the MHC class I chain-related molecules (MIC) A/B and the UL16-binding proteins (ULBPs) 1–3 were observed. Downregulation of class I by lactacystin (LAC) significantly enhances NK cell-mediated lysis of MM. Furthermore, the downregulation degree of class I was associated with increased susceptibility of myeloma cells to NK cell killing. HLA blocking antibody produced results that were similar to the findings from proteasome inhibitor. Taken together, our data suggest that proteasome inhibitors, possible targeting inhibitory KIR ligand class I on tumor cells, may contribute to the activation of cytolytic effector NK cells in vitro, enhancing their anti-myeloma activity. Our findings provide a rationale for clinical evaluation of proteasome inhibitor, alone or in combination, as a novel approach to immunotherapy of MM.  相似文献   

6.
MHC class I-independent recognition of NK-activating receptor KIR2DS4   总被引:8,自引:0,他引:8  
Natural killer cells are capable of killing tumor and virus-infected cells. This killing is mediated primarily via the natural cytotoxicity receptors, including NKp46, NKp44, NKp30, and by the NKG2D receptor. Killer cell Ig-like receptors (KIRs) are mainly involved in inhibiting NK killing (inhibitory KIRs) via interaction with MHC class I molecules. Some KIRs, however, have been found to enhance NK killing when interacting with MHC class I molecules (activating KIRs). We have previously demonstrated that KIR2DS4, an activating KIR, recognizes the HLA-Cw4 protein. The interaction observed was weak and highly restricted to HLA-Cw4 only. These findings prompted us to check whether KIR2DS4 might have additional ligand(s). In this study, we show that KIR2DS4 is able to also interact with a non-class I MHC protein expressed on melanoma cell lines and on a primary melanoma. This interaction is shown to be both specific and functional. Importantly, site-directed mutagenesis analysis reveals that the amino acid residues involved in the recognition of this novel ligand are different from those interacting with HLA-Cw4. These results may shed new light on the function of activating KIRs and their relevance in NK biology.  相似文献   

7.
Natural killer (NK) cells direct cytotoxicity against tumor or virally infected cells. NK cell activation depends on a fine balance between inhibitory and activating receptors. NKp44 is a cytotoxicity activating receptor composed of one Ig-like extracellular domain, a transmembrane segment, and a cytoplasmic domain. The 2.2 A crystal structure shows that the NKp44 Ig domain forms a saddle-shaped dimer, where a charged surface groove protrudes from the core structure in each subunit. NKp44 Ig domain disulfide bridge topology defines a new Ig structural subfamily. The data presented are a first step toward understanding the molecular basis for ligand recognition by natural cytotoxicity receptors, whose key role in the immune system is established, but whose cellular ligands are still elusive.  相似文献   

8.

Background

Despite Natural Killer (NK) cells were originally defined as effectors of spontaneous cytotoxicity against tumors, extremely limited information is so far available in humans on their capability of killing cancer cells in an autologous setting.

Methodology/Principal Findings

We have established a series of primary melanoma cell lines from surgically resected specimens and here showed that human melanoma cells were highly susceptible to lysis by activated autologous NK cells. A variety of NK cell activating receptors were involved in killing: particularly, DNAM-1 and NKp46 were the most frequently involved. Since self HLA class I molecules normally play a protective role from NK cell-mediated attack, we analyzed HLA class I expression on melanomas in comparison to autologous lymphocytes. We found that melanoma cells presented specific allelic losses in 50% of the patients analyzed. In addition, CD107a degranulation assays applied to NK cells expressing a single inhibitory receptor, revealed that, even when expressed, specific HLA class I molecules are present on melanoma cell surface in amount often insufficient to inhibit NK cell cytotoxicity. Remarkably, upon activation, also the so called “unlicensed” NK cells, i.e. NK cells not expressing inhibitory receptor specific for self HLA class I molecules, acquired the capability of efficiently killing autologous melanoma cells, thus additionally contributing to the lysis by a mechanism independent of HLA class I expression on melanoma cells.

Conclusions/Significance

We have investigated in details the mechanisms controlling the recognition and lysis of melanoma cells by autologous NK cells. In these autologous settings, we demonstrated an efficient in vitro killing upon NK cell activation by mechanisms that may be related or not to abnormalities of HLA class I expression on melanoma cells. These findings should be taken into account in the design of novel immunotherapy approaches against melanoma.  相似文献   

9.
Natural killer (NK) cells are an important element in the immune defense against the orthopox family members vaccinia virus (VV) and ectromelia virus (ECTV). NK cells are regulated through inhibitory and activating signaling receptors, the latter involving NKG2D and the natural cytotoxicity receptors (NCR), NKp46, NKp44 and NKp30. Here we report that VV infection results in an upregulation of ligand structures for NKp30 and NKp46 on infected cells, whereas the binding of NKp44 and NKG2D was not significantly affected. Likewise, infection with ectromelia virus (ECTV), the mousepox agent, enhanced binding of NKp30 and, to a lesser extent, NKp46. The hemagglutinin (HA) molecules from VV and ECTV, which are known virulence factors, were identified as novel ligands for NKp30 and NKp46. Using NK cells with selectively silenced NCR expression and NCR-CD3ζ reporter cells, we observed that HA present on the surface of VV-infected cells, or in the form of recombinant soluble protein, was able to block NKp30-triggered activation, whereas it stimulated the activation through NKp46. The net effect of this complex influence on NK cell activity resulted in a decreased NK lysis susceptibility of infected cells at late time points of VV infection when HA was expression was pronounced. We conclude that poxviral HA represents a conserved ligand of NCR, exerting a novel immune escape mechanism through its blocking effect on NKp30-mediated activation at a late stage of infection.  相似文献   

10.
BackgroundT-cell receptor-engineered T-cell therapies have achieved promising response rates against synovial sarcoma in clinical trials, but their applicability is limited owing to the HLA matching requirement. Chimeric antigen receptor (CAR) can redirect primary T cells to tumor-associated antigens without requiring HLA matching. However, various obstacles, including the paucity of targetable antigens, must be addressed for synovial sarcoma. Ligands for natural killer (NK) cell-activating receptors are highly expressed by tumor cells.MethodsThe surface expression of ligands for NK cell-activating receptors in synovial sarcoma cell lines was analyzed. We analyzed RNA sequencing data deposited in a public database to evaluate NKp44-ligand expression. Primary T cells retrovirally transduced with CAR targeting NKp44 ligands were evaluated for their functions in synovial sarcoma cells. Alterations induced by various stimuli, including a histone deacetylase inhibitor, a hypomethylating agent, inflammatory cytokines, and ionizing radiation, in the expression levels of NKp44 ligands were investigated.Results: Ligands for NKp44 and NKp30 were expressed in all cell lines. NKG2D ligands were barely expressed in a single cell line. None of the cell lines expressed NKp46 ligand. Primary synovial sarcoma cells expressed the mRNA of the truncated isoform of MLL5, a known cellular ligand for NKp44. NKp44-based CAR T cells specifically recognize synovial sarcoma cells, secrete interferon-γ, and exert suppressive effects on tumor cell growth. No stimulus altered the expression of NKp44 ligands.ConclusionNKp44-based CAR T cells can redirect primary human T cells to synovial sarcoma cells. CAR-based cell therapies may be an option for treating synovial sarcomas.  相似文献   

11.
Pig-to-human xenotransplantation has been proposed as a means to alleviate the shortage of human organs for transplantation, but cellular rejection remains a hurdle for successful xenograft survival. NK cells have been implicated in xenograft rejection and are tightly regulated by activating and inhibitory receptors recognizing ligands on potential target cells. The aim of the present study was to analyze the role of activating NK receptors including NKp30, NKp44, NKp46, and NKG2D in human xenogeneic NK cytotoxicity against porcine endothelial cells (pEC). (51)Cr release and Ab blocking assays were performed using freshly isolated, IL-2-activated polyclonal NK cell populations as well as a panel of NK clones. Freshly isolated NK cells are NKp44 negative and lysed pEC exclusively in an NKG2D-dependent fashion. In contrast, the lysis of pEC mediated by activated human NK cells depended on both NKp44 and NKG2D, since a complete protection of pEC was achieved only by simultaneous blocking of these activating NK receptors. Using a panel of NK clones, a highly significant correlation between anti-pig NK cytotoxicity and NKp44 expression levels was revealed. Other triggering receptors such as NKp30 and NKp46 were not involved in xenogeneic NK cytotoxicity. Finally, Ab-dependent cell-mediated cytotoxicity of pEC mediated by human NK cells in the presence of xenoreactive Ab was not affected by blocking of activating NK receptors. In conclusion, strategies aimed to inhibit interactions between NKp44 and NKG2D on human NK cells and so far unknown ligands on pEC may prevent direct NK responses against xenografts but not xenogeneic Ab-dependent cell-mediated cytotoxicity.  相似文献   

12.
13.
We provide evidence that tumor cells can induce apoptosis of NK cells by engaging the natural cytotoxicity receptors (NCR) NKp30, NKp44, and NKp46. Indeed, the binding between NCR on NK cells and their putative ligands on tumor target cells led to NK cell apoptosis, and this event was abolished by blocking NCR/NCR-ligand interaction by anti-NCR-specific mAbs. The engagement of NCR induced up-regulation of Fas ligand (FasL) mRNA, FasL protein synthesis, and release. In turn, FasL interacting with Fas at NK cell surface causes NK cell suicide, as apoptosis of NK cells was inhibited by blocking FasL/Fas interaction with specific mAbs. Interestingly, NK cell apoptosis, but not killing of tumor target cells, is inhibited by cyclosporin A, suggesting that apoptosis and cytolysis are regulated by different biochemical pathways. These findings indicate that NCR are not only triggering molecules essential for antitumor activity, but also surface receptors involved in NK cell suicide.  相似文献   

14.
The natural cytotoxicity receptors, comprised of three type I membrane proteins NKp30, NKp44, and NKp46, are a unique set of activating proteins expressed mainly on the surface of natural killer (NK) cells. Among these, NKp30 is a major receptor targeting virus-infected cells, malignantly transformed cells, and immature dendritic cells. To date, only few cellular ligands of NKp30 have been discovered, and the molecular details of ligand recognition by NKp30 are poorly understood. Within the current study, we found that the ectodomain of NKp30 forms functional homo-oligomers that mediate high affinity binding to its corresponding cellular ligand B7-H6. Notably, this homo-oligomerization is strongly promoted by the stalk domain of NKp30. Based on these data, we suggest that homo-oligomerization of NKp30 in the plasma membrane of NK cells, which might be favored by IL-2-dependent up-regulation of NKp30 expression, provides a way to improve recognition and lysis of target cells by NK cells.  相似文献   

15.
The natural cytotoxic receptors (NCRs) are a unique set of activating proteins expressed mainly on the surface of natural killer (NK) cells. The NCRs, which include three members; NKp46, NKp44 and NKp30, are critically involved in NK cytotoxicity against different targets, including a wide range of tumor cells derived from various origins. Even though the tumor ligands of the NCRs have not been identified yet, the selective manner by which these receptors target tumor cells may provide an excellent basis for the development of novel anti-tumor therapies. To test the potential use of the NCRs as anti-tumor agents, we generated soluble NCR-Ig fusion proteins in which the constant region of human IgG1 was fused to the extracellular portion of the receptor. We demonstrate, using two different human prostate cancer cell lines, that treatment with NKp30-Ig, dramatically inhibits tumor growth in vivo. Activated macrophages were shown to mediate an ADCC response against the NKp30-Ig coated prostate cell lines. Finally, the Ig fusion proteins were also demonstrated to discriminate between benign prostate hyperplasia and prostate cancer. This may provide a novel diagnostic modality in the difficult task of differentiating between these highly common pathological conditions.  相似文献   

16.
The natural cytotoxicity receptors are a unique set of activating proteins expressed mainly on the surface of natural killer (NK) cells. The human natural cytotoxicity receptor family comprises the three type I membrane proteins NKp30, NKp44, and NKp46. Especially NKp30 is critical for the cytotoxicity of NK cells against different targets including tumor, virus-infected, and immature dendritic cells. Although the crystal structure of NKp30 was recently solved (Li, Y., Wang, Q., and Mariuzza, R. A. (2011) J. Exp. Med. 208, 703-714; Joyce, M. G., Tran, P., Zhuravleva, M. A., Jaw, J., Colonna, M., and Sun, P. D. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 6223-6228), a key question, how NKp30 recognizes several non-related ligands, remains unclear. Therefore, we investigated the parameters that impact ligand recognition of NKp30. Based on various NKp30-hIgG1-Fc fusion proteins, which were optimized for minimal background binding to cellular Fcγ receptors, we identified the flexible stalk region of NKp30 as an important but so far neglected module for ligand recognition and related signaling of the corresponding full-length receptor proteins. Moreover, we found that the ectodomain of NKp30 is N-linked glycosylated at three different sites. Mutational analyses revealed differential binding affinities and signaling capacities of mono-, di-, or triglycosylated NKp30, suggesting that the degree of glycosylation could provide a switch to modulate the ligand binding properties of NKp30 and NK cell cytotoxicity.  相似文献   

17.
Evasion of host immune responses is well documented for viruses and may also occur during tumor immunosurveillance. The mechanisms involve alterations in MHC class I expression, Ag processing and presentation, chemokine and cytokine production, and lymphocyte receptor expression. Epithelial tumors overexpress MHC class I chain-related (MIC) molecules, which are ligands for the activating receptor NKG2D on NK and T cells. We report that NK cells from patients with colorectal cancer lack expression of activating NKG2D and chemokine CXCR1 receptors, both of which are internalized. Serum levels of soluble MIC (sMIC) are elevated and are responsible for down-modulation of NKG2D and CXCR1. In contrast, high serum levels of CXC ligands, IL-8, and epithelial-neutrophil-activating peptide (ENA-78) do not down-modulate CXCR1. In vitro, internalization of NKG2D and CXCR1 occurs within 4 and 24 h, respectively, of incubating normal NK cells with sMIC-containing serum. Furthermore, natural cytotoxicity receptor NKp44 and chemokine receptor CCR7 are also down-modulated in IL-2-activated NK cells cocultured in MIC-containing serum-an effect secondary to the down-modulation of NKG2D and not directly caused by physical association with sMIC. The patients' NK cells up-regulate expression of NKG2D, NKp44, CXCR1, and CCR7 when cultured in normal serum or anti-MIC Ab-treated autologous serum. NKG2D(+) but not NKG2D(-) NK cells are tumoricidal in vitro, and in vivo they selectively traffic to the xenografted carcinoma, form immunological synapse with tumor cells, and significantly retard tumor growth in the SCID mice. These results suggest that circulating sMIC in the cancer patients deactivates NK immunity by down-modulating important activating and chemokine receptors.  相似文献   

18.
Natural Killer (NK) cells are important in the immune response to a number of viruses; however, the mechanisms used by NK cells to discriminate between healthy and virus-infected cells are only beginning to be understood. Infection with vaccinia virus provokes a marked increase in the susceptibility of target cells to lysis by NK cells, and we show that recognition of the changes in the target cell induced by vaccinia virus infection depends on the natural cytotoxicity receptors NKp30, NKp44, and NKp46. Vaccinia virus infection does not induce expression of ligands for the activating NKG2D receptor, nor does downregulation of major histocompatibility complex class I molecules appear to be of critical importance for altered target cell susceptibility to NK cell lysis. The increased susceptibility to lysis by NK cells triggered upon poxvirus infection depends on a viral gene, or genes, transcribed early in the viral life cycle and present in multiple distinct orthopoxviruses. The more general implications of these data for the processes of innate immune recognition are discussed.  相似文献   

19.

Background

The natural cytotoxicity receptors (NCR) are important to stimulate the activity of Natural Killer (NK) cells against transformed cells. Identification of NCR ligands and their level of expression on normal and neoplastic cells has important implications for the rational design of immunotherapy strategies for cancer.

Methodology/Principal Findings

Here we analyze the expression of NKp30 ligand and NKp44 ligand on 30 transformed or non-transformed cell lines of different origin. We find intracellular and surface expression of these two ligands on almost all cell lines tested. Expression of NKp30 and NKp44 ligands was variable and did not correlate with the origin of the cell line. Expression of NKp30 and NKp44 ligand correlated with NKp30 and NKp44-mediated NK cell lysis of tumor cells, respectively. The surface expression of NKp30 ligand and NKp44 ligand was sensitive to trypsin treatment and was reduced in cells arrested in G2/M phase.

Conclusion/Significance

These data demonstrate the ubiquitous expression of the ligands for NKp30 and NKp44 and give an important insight into the regulation of these ligands.  相似文献   

20.
NKp44 is a natural cytotoxicity receptor expressed by human NK cells upon activation. In this study, we demonstrate that cell surface heparan sulfate proteoglycans (HSPGs), expressed by target cells, are involved in the recognition of tumor cells by NKp44. NKp44 showed heparan sulfate-dependent binding to tumor cells; this binding was partially blocked with an antibody to heparan sulfate. In addition, direct binding of NKp44 to heparin was observed, and soluble heparin/heparan sulfate enhanced the secretion of IFNgamma by NK92 cells activated with anti-NKp44 monoclonal antibody. Basic amino acids, predicted to constitute the putative heparin/heparan sulfate binding site of NKp44, were mutated. Tumor cell recognition of the mutated NKp44 proteins was significantly reduced and correlated with their lower recognition of heparin. We previously reported that NKp44 recognizes the hemagglutinin of influenza virus (IV). Nevertheless, the ability of the mutated NKp44 proteins to bind viral hemagglutinin expressed by IV-infected cells was not affected. Thus, we suggest that heparan sulfate epitope(s) are ligands/co-ligands of NKp44 and are involved in its tumor recognition ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号