首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: To screen from pickled vegetables the potential probiotic lactic acid bacteria (LAB) strains with antagonistic activity against Salmonella invasion in host. Methods and Results: Probiotic properties including acid and bile tolerance as well as inhibition on pathogenic bacteria were used for screening of LAB strains from pickled vegetables. Two strains, i.e Pediococcus pentosaceus MP12 and Lactobacillus plantarum LAP6, were selected and further assayed for their activities against Salmonella invasion in mouse liver and spleen. For these two LAB strains, strain LAP6 was able to adhere to the mouse intestinal epithelium cells. Conclusions: In screening of the probiotic strains able to inhibit the Salmonella invasion in host, factors other than the adherence to host intestinal epithelium may contribute some roles. Significance and Impact of the Study: Probiotic LAB strains with activity against Salmonella invasion in host could be isolated from vegetable origins. These strains may be used for vegetable processing.  相似文献   

2.

Background

Lactic acid bacteria (LAB) have been considered as potentially probiotic organisms due to their potential human health properties. This study aimed to evaluate both in vitro and in vivo, the potential probiotic properties of Lactobacillus species isolated from fecal samples of healthy humans in Iran.

Methods and Results

A total of 470 LAB were initially isolated from 53 healthy individual and characterized to species level. Of these, 88 (86%) were Lactobacillus species. Biochemical and genetic fingerprinting with Phene-Plate system (PhP-LB) and RAPD-PCR showed that the isolates were highly diverse consisted of 67(76.1%) and 75 (85.2%) single types (STs) and a diversity indices of 0.994 and 0.997, respectively. These strains were tested for production of adhesion to Caco-2 cells, antibacterial activity, production of B12, anti-proliferative effect and interleukin-8 induction on gut epithelial cell lines and antibiotic resistance against 9 commonly used antibiotics. Strains showing the characteristics consistent with probiotic strains, were further tested for their anti-inflammatory effect in mouse colitis model. Only one L. brevis; one L. rhamnosus and two L. plantarum were shown to have significant probiotic properties. These strains showed shortening the length of colon compared to dextran sulfate sodium and disease activity index (DAI) was also significantly reduced in mouse.

Conclusion

Low number of LAB with potential probiotic activity as well as high diversity of lactobacilli species was evident in Iranian population. It also suggest that specific strains of L. plantarum, L. brevis and L. rhamnosus with anti-inflammatory effect in mouse model of colitis could be used as a potential probiotic candidate in inflammatory bowel disease to decrease the disease activity index.  相似文献   

3.
Fifty-one lactic acid bacteria (LAB) strains were isolated and identified based on 16S ribosomal DNA sequence from the intestinal tracts of 142 kuruma shrimps (Marsupenaeus japonicus) collected from Kanmon Strait, Fukuoka and Tachibana Bay, Nagasaki, Japan. Cellular immunomodulatory function of 51 isolated LAB strains was assessed by measuring the level of interferon (IFN)-γ induction in mouse spleen cell culture. The strain Lactococcus lactis D1813 exhibited the highest amount of IFN-γ production and also bactericidal activity and was selected for testing its immunomodulatory role as a probiotic in kuruma shrimp. We also assessed the effect of dietary incorporation of this probiotic on resistance to Vibrio penaeicida infection in the kuruma shrimp. Our results demonstrate that probiotic L. lactis D1813-containing diet-fed (105 cfu g?1) shrimps displayed a significant up-regulation of lysozyme gene expressions in the intestine and hepatopancreas. However, insignificantly higher expression of anti-lipopolysaccharide factor, super oxide dismutase, prophenoloxidase, and toll-like receptor 1 was recorded in the intestine of shrimps fed the probiotic diet. Moreover, significantly increased (P?<?0.01) resistance to the bacterial pathogen in term of better post-infection survival (61.7 %) was observed in the shrimps fed with the probiotic-incorporated diet compared with the control diet-fed group (28.3 %). The present study indicates the immunomodulatory role of the LAB L. lactis D1813 on the kuruma shrimp immune system and supports its potential use as an effective probiotic in shrimp aquaculture.  相似文献   

4.
Lactic acid bacteria (LAB) are natural inhabitants of the gastrointestinal tract (GIT) of humans and animals, and some LAB species receive considerable attention due to their health benefits. Although many papers have been published on probiotic LAB, only a few reports have been published on the migration and colonization of the cells in the GIT. This is due mostly to the lack of efficient reporter systems. In this study, we report on the application of the fluorescent mCherry protein in the in vivo tagging of the probiotic strains Enterococcus mundtii ST4SA and Lactobacillus plantarum 423. The mCherry gene, encoding a red fluorescent protein (RFP), was integrated into a nonfunctional region on the genome of L. plantarum 423 by homologous recombination. In the case of E. mundtii ST4SA, the mCherry gene was cloned into the pGKV223D LAB/Escherichia coli expression vector. Expression of the mCherry gene did not alter the growth rate of the two strains and had no effect on bacteriocin production. Both strains colonized the cecum and colon of mice.  相似文献   

5.
Estimation of bile tolerance, endurance to gastric and intestinal environment and adhesion potential to intestinal cells are significant selection criteria for probiotic lactic acid bacteria (LAB). In this paper, the probiotic potential of native bacteriocin-producing LAB isolated previously from indigenous source has been determined through quantitative approaches. Among fifteen anti-listerial bacteriocin-producing native LAB, ten strains were found to be bile tolerant. The presence of bile salt hydrolase (bsh) gene in native Lactobacillus plantarum strains was detected by PCR and confirmed by nucleic acid sequencing of a representative amplicon. Interestingly, three native LAB strains exhibited significant viability in simulated gastric fluid, analogous to the standard LAB Lactobacillus rhamnosus GG, while an overwhelming majority of the native LAB strains demonstrated the ability to survive and remain viable in simulated intestinal fluid. Quantitative adhesion assays based on conventional plating method and a fluorescence-based method revealed that the LAB isolates obtained from dried fish displayed significant in vitro adhesion potential to human adenocarcinoma HT-29 cells, and the adhesion level was comparable to some of the standard probiotic LAB strains. The present study unravels putative probiotic attributes in certain bacteriocin-producing LAB strains of non-human origin, which on further in vivo characterization could find specific applications in probiotic food formulations targeted for health benefits.  相似文献   

6.
Considerable variations among probiotics with respect to their health benefitting attributes fuel the research on bioprospecting of proficient probiotic strains from various ecological niches especially the poorly unexplored ones. In the current study, kalarei, an indigenous cheese-like fermented milk product, and other dairy-based sources like curd and raw milk were used for isolation of lactic acid bacteria (LAB). Among 34 LAB isolates, 7 that could withstand simulated gastrointestinal (GI) conditions were characterized for functional probiotic attributes, viz. adhesion ability, aggregation and coaggregation, extracellular enzyme producing capability, antibacterial activity against pathogens and antibiotic resistance. The isolate M-13 (from kalarei) which exhibited most of the desirable probiotic functional properties was identified as Lactobacillus plantarum based on 16S ribosomal DNA sequence analysis and designated as L. plantarum M-13. The sequence was submitted to GenBank (accession number KT592509). The study presents the first ever report of isolation of potential probiotic LAB, i.e. L. plantarum M-13 from indigenous food kalarei, and its application for development of potential probiotic fermented oat flour (PFOF). PFOF was analysed for parameters like viability of L. plantarum M-13, acidity and pH. Results show that PFOF serves as a good matrix for potential probiotic L. plantarum M-13 as it supported adequate growth of the organism (14.4 log cfu/ml after 72 h of fermentation). In addition, appreciable acid production by L. plantarum M-13 and consequential pH reduction indicates the vigorous and active metabolic status of the potential probiotic organism in the food matrix. Thus, study shows that fermented oat flour may possibly be developed as a potential probiotic carrier especially in view of the problems associated with dairy products as probiotic vehicles.  相似文献   

7.
Respiratory viruses such as influenza viruses, respiratory syncytial virus (RSV), and coronaviruses initiate infection at the mucosal surfaces of the upper respiratory tract (URT), where the resident respiratory microbiome has an important gatekeeper function. In contrast to gut-targeting administration of beneficial bacteria against respiratory viral disease, topical URT administration of probiotics is currently underexplored, especially for the prevention and/or treatment of viral infections. Here, we report the formulation of a throat spray with live lactobacilli exhibiting several in vitro mechanisms of action against respiratory viral infections, including induction of interferon regulatory pathways and direct inhibition of respiratory viruses. Rational selection of Lactobacillaceae strains was based on previously documented beneficial properties, up-scaling and industrial production characteristics, clinical safety parameters, and potential antiviral and immunostimulatory efficacy in the URT demonstrated in this study. Using a three-step selection strategy, three strains were selected and further tested in vitro antiviral assays and in formulations: Lacticaseibacillus casei AMBR2 as a promising endogenous candidate URT probiotic with previously reported barrier-enhancing and anti-pathogenic properties and the two well-studied model strains Lacticaseibacillus rhamnosus GG and Lactiplantibacillus plantarum WCFS1 that display immunomodulatory capacities. The three strains and their combination significantly reduced the cytopathogenic effects of RSV, influenza A/H1N1 and B viruses, and HCoV-229E coronavirus in co-culture models with bacteria, virus, and host cells. Subsequently, these strains were formulated in a throat spray and human monocytes were employed to confirm the formulation process did not reduce the interferon regulatory pathway-inducing capacity. Administration of the throat spray in healthy volunteers revealed that the lactobacilli were capable of temporary colonization of the throat in a metabolically active form. Thus, the developed spray with live lactobacilli will be further explored in the clinic as a potential broad-acting live biotherapeutic strategy against respiratory viral diseases.  相似文献   

8.
Several probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD), showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp. lactis CNRZ327 (Lb CNRZ327), also possesses anti-inflammatory effects in vitro and in vivo, demonstrating that common dairy bacteria may be useful in the treatment or prevention of IBD. Here, we studied the mechanisms underlying the protective effects of Lb CNRZ327 in vivo, in a mouse dextran sodium sulfate (DSS) colitis model. During colitis, Lb CNRZ327 modulated the production of TGF-β, IL-6, and IL-12 in colonic tissue and of TGF-β and IL-6 in the spleen, and caused an expansion of CD4+Foxp3+ regulatory T cells in the cecal lymph nodes. Moreover, a strong tendency to CD4+Foxp3+ expansion was also observed in the spleen. The results of this study for the first time show that orally administered dairy lactobacilli can not only modulate mucosal but also systemic immune responses and constitute an effective treatment of IBD.  相似文献   

9.
Capability to produce antilisterial bacteriocins by lactic acid bacteria (LAB) can be explored by the food industry as a tool to increase the safety of foods. Furthermore, probiotic activity of bacteriogenic LAB brings extra advantages to these strains, as they can confer health benefits to the consumer. Beneficial effects depend on the ability of the probiotic strains to maintain viability in the food during shelf-life and to survive the natural defenses of the host and multiply in the gastrointestinal tract (GIT). This study evaluated the probiotic potential of a bacteriocinogenic Lactobacillus plantarum strain (Lb. plantarum ST16Pa) isolated from papaya fruit and studied the effect of encapsulation in alginate on survival in conditions simulating the human GIT. Good growth of Lb. plantarum ST16Pa was recorded in MRS broth with initial pH values between 5.0 and 9.0 and good capability to survive in pH 4.0, 11.0 and 13.0. Lb. plantarum ST16Pa grew well in the presence of oxbile at concentrations ranging from 0.2 to 3.0%. The level of auto-aggregation was 37%, and various degrees of co-aggregation were observed with different strains of Lb. plantarum, Enterococcus spp., Lb. sakei and Listeria, which are important features for probiotic activity. Growth was affected negatively by several medicaments used for human therapy, mainly anti-inflammatory drugs and antibiotics. Adhesion to Caco-2 cells was within the range reported for other probiotic strains, and PCR analysis indicated that the strain harbored the adhesion genes mapA, mub and EF-Tu. Encapsulation in 2, 3 and 4% alginate protected the cells from exposure to 1 or 2% oxbile added to MRS broth. Studies in a model simulating the transit through the GIT indicated that encapsulated cells were protected from the acidic conditions in the stomach but were less resistant when in conditions simulating the duodenum, jejunum, ileum and first section of the colon. To our knowledge, this is the first report on a bacteriocinogenic LAB isolated from papaya that presents application in food biopreservation and may be beneficial to the consumer health due to its potential probiotic characteristics.  相似文献   

10.
Camu-camu (Myriciaria dubia Mc. Vaugh) is a tropical fruit rich in phenolic antioxidants with diverse human health benefits. The aim of this study was to improve phenolic antioxidant–linked functionalities of camu–camu relevant for dietary management of early stages of type 2 diabetes (T2D) and associated hypertension using lactic acid bacterial (LAB) fermentation. Dried camu–camu powder combined with soymilk was fermented using two LAB strains, Lactobacillus plantarum & Lactobacillus helveticus individually and evaluated for total soluble phenolic content, total antioxidant activity, α-amylase, α-glucosidase, and angiotensin-I-converting enzyme (ACE) inhibitory activities using in vitro assay models. Overall, fermentation of camu–camu and soymilk combination with both LAB strains resulted in higher α-amylase, and α-glucosidase inhibitory activities, while total soluble phenolic content and antioxidant activity did not change significantly with fermentation. Improvement of ACE enzyme inhibitory activity was also observed when camu–camu (0.5 & 1%) and soymilk combination was fermented with L. plantarum. Therefore such safe and value added fermentation strategy with LAB can be used to improve human health relevant phenolic antioxidant profile in camu–camu and has relevance for designing innovative probiotic beverage to target improved food designs for dietary support for T2D and associated hypertension management.  相似文献   

11.
Lactobacillus plantarum strains isolated and identified from naturally-fermented Chinese sauerkraut were examined in vitro for potential probiotic properties and in vivo for cholesterol-lowering effect in mice. Among 7 isolated L. plantarum strains, strains S2-5 and S4-1 were found to possess desirable probiotic properties including ability to survive at pH 2.0 for 60 min, tolerate pancreatin and bile salts, adhere to Caco-2 cells, produce high β-galactosidase activity and antimicrobial activity against Escherichia coli O157 and Shigella flexneri CMCC(B). In addition, strains S2-5 and S4-1 were susceptible to several antibiotics, and capable of reducing cholesterol level in MRS medium by assimilation of cholesterol at 20.39 and 22.28 μg ml?1, respectively. The in vivo study with L. plantarum S4-1 showed that feeding with fermented milk containing this strain was able to effectively reduce serum cholesterol level in mice, demonstrating its potential as an excellent probiotic candidate for applications in functional products.  相似文献   

12.
The aim of this study was to screen potential probiotic lactic acid bacteria from Chinese spontaneously fermented non-dairy foods by evaluating their probiotic and safety properties. All lactic acid bacteria (LAB) strains were identified by 16S rRNA gene sequencing. The in vitro probiotic tests included survival under low pH and bile salts, cell surface hydrophobicity, auto-aggregation, co-aggregation, antibacterial activity, and adherence ability to cells. The safety properties were evaluated based on hemolytic activity and antibiotic resistance profile. The salt tolerance, growth in litmus milk, and acidification ability were examined on selected potential probiotic LAB strains to investigate their potential use in food fermentation. A total of 122 strains were isolated and identified at the species level by 16S rRNA gene sequencing and included 62 Lactobacillus plantarum, 40 Weissella cibaria, 12 Lactobacillus brevis, 6 Weissella confusa, and 2 Lactobacillus sakei strains. One W. cibaria and nine L. plantarum isolates were selected based on their tolerance to low pH and bile salts. The hydrophobicity, auto-aggregation, co-aggregation, and antagonistic activities of these isolates varied greatly. All of the 10 selected strains showed multiple antibiotic resistance phenotypes and no hemolytic activity. The highest adhesion capacity to SW480 cells was observed with L. plantarum SK1. The isolates L. plantarum SK1, CB9, and CB10 were the most similar strains to Lactobacillus rhamnosus GG and selected for their high salt tolerance and acidifying activity. The results revealed strain-specific probiotic properties were and potential probiotics that can be used in the food industry.  相似文献   

13.
Lactobacillus plantarum CNRZ 1228 exhibited heme-dependent catalase activity under environmental conditions similar to those encountered during sausage fermentation. The 1,455-bp catalase gene (katL) was cloned and encoded a protein of 484 amino acids. Expression of katL in a heterologous host showed that katL encodes a functional catalase. PCR screening of selected strains of lactic acid bacteria for katL indicated the presence of similar genes in other strains of lactobacilli.  相似文献   

14.
Lactobacillus plantarum DK119 (DK119) isolated from the fermented Korean cabbage food was used as a probiotic to determine its antiviral effects on influenza virus. DK119 intranasal or oral administration conferred 100% protection against subsequent lethal infection with influenza A viruses, prevented significant weight loss, and lowered lung viral loads in a mouse model. The antiviral protective efficacy was observed in a dose and route dependent manner of DK119 administration. Mice that were treated with DK119 showed high levels of cytokines IL-12 and IFN-γ in bronchoalveolar lavage fluids, and a low degree of inflammation upon infection with influenza virus. Depletion of alveolar macrophage cells in lungs and bronchoalveolar lavages completely abrogated the DK119-mediated protection. Modulating host innate immunity of dendritic and macrophage cells, and cytokine production pattern appeared to be possible mechanisms by which DK119 exhibited antiviral effects on influenza virus infection. These results indicate that DK119 can be developed as a beneficial antiviral probiotic microorganism.  相似文献   

15.
The bile salt hydrolase (Bsh) activity of probiotic bacterium residing in gastrointestinal tract has often being associated with its cholesterol-lowering effects. Hence, Bsh activity was explored in this study as the criterion for the selection of most potential Bsh-active and cholesterol-lowering indigenous Lactobacillus strains. Forty lactobacilli were adjudged Bsh active after a preliminary screening of 102 lactobacilli and occurrence of Bsh activity correlated well with their natural habitats. Of the 40 shortlisted lactobacilli, fifteen putative Lactobacillus strains were selected and further tested for their comparative Bsh activity. In the end, indigenous Lactobacillus plantarum strains Lp91 and Lp21 were emerged as the promising Bsh-active lactobacilli with their substrate preference inclined more towards glycocholate than other bile acid amino conjugates. In addition, strains Lp91 and Lp21 also exhibited significantly high bile salt deconjugation, cholesterol assimilation and cholesterol co-precipitation ability in vitro. In conclusion, indigenous L. plantarum strains Lp91 and Lp21 may be the promising candidate probiotics to elucidate the ecological significance of probiotic Bsh activity in vivo.  相似文献   

16.
The potential use of dietary measures to treat influenza can be an important alternative for those who lack access to influenza vaccines or antiviral drugs. Lactobacillus plantarum (Lp) is one of many lactic acid bacteria that grow in ‘kimchi’, an essential part of Korean meal, and several strains of Lp reportedly show protective effects against influenza. Using heat-killed Lp (nF1) isolated from kimchi, which is known for its immunomodulatory effects, we investigated whether regular oral intake of nF1 could influence the outcome of influenza virus infection in a mouse model. In a lethal challenge with influenza A (H1N1 and H3N2 subtypes) and influenza B (Yamagata lineage) viruses, daily oral administration of nF1 delayed the mean number of days to death of the infected mice and resulted in increased survival rates compared with those of the non-treated mice. Consistent with these observations, nF1 treatment also significantly reduced viral replication in the lungs of the infected mice. Taken together, our results might suggest the remedial potential of heatkilled Lactobacillus probiotics against influenza.  相似文献   

17.
The objective of the present study was to investigate lactic acid bacteria (LAB) isolated from kimchi for their potential probiotic use. Ten preselected LAB strains were evaluated for their functionality and safety. Examined characteristics included acid and bile tolerance, cell adhesion, antimicrobial activity against pathogens, hemolytic activity, undesirable biochemical characteristics, and antibiotic resistance. Results indicated that consumption of these 10 strains does not pose any health risk, as they were not hemolytic and exhibited no undesirable biochemical activity or antibiotic resistance. In particular, three strains, Lactobacillus plantarum NO1, Pediococcus pentosaceus MP1, and Lactobacillus plantarum AF1, showed high degrees of acid and bile tolerance, adherence to Caco-2 and HT-29 cells, and antimicrobial activity against four pathogens (Staphylococcus aureus, Escherichia coli O157:H7, Salmonella typhi, and Listeria monocytogenes). These results suggest that LAB strains from kimchi may have potential use as novel probiotics.  相似文献   

18.
The aim of this study was to evaluate the technological and functional potential of lactic acid bacteria (LAB) isolated from fermented stinky bean (Sataw-Dong). Of the 114 LAB colonies isolated from spontaneously fermented stinky bean which showed inhibitory activity against two food-borne pathogens (Staphylococcus aureus DMST 4480 and Escherichia coli DMST 4212), the five isolates (KJ03, KJ15, KJ17, KJ22, KJ23) exhibiting excellent antagonistic activity were subjected to further study. These five strains showed titratable acidity as lactic acid in the range of 1.47–1.55 %, with strains KJ03 and KJ23 additionally exhibiting a high NaCl tolerance of >7 % (w/v). Using 16S rRNA gene sequence analysis, strains KJ03 and KJ23 were identified as Lactobacillus plantarum and L. fermentum, respectively, and further investigated for their functional properties in vitro. Both strains survived well in a simulated gastrointestinal tract environment with <1 log cell decrease over 8 h (>8 log CFU/ml). Lactobacillus plantarum KJ03 showed the best performance with respect to cholesterol removal (53 %), while L. fermentum KJ23 showed the highest cell-surface hydrophobicity (39.5 %). Neither of the two strains showed any hemolysis activity. Both strains hydrolyzed glycodeoxycholic and taurodeoxycholic acids. In terms of antibiotic susceptibility, L. fermentum KJ23 was not sensitive to tetracycline. Taking all of the results into account, L. plantarum KJ03 possessed desirable in vitro functional properties. This strain is therefore a good candidate for further investigation for use in Sataw-Dong fermentation to assess its technological performance as a potential probiotic starter.  相似文献   

19.
The lactic acid bacteria (LAB) are safe microorganisms which are mainly used for the preparation of fermented foods and for probiotic applications. The potential of LAB as live vehicles for the production and delivery of therapeutic molecules such as antigens is also being actively investigated today. However, very little is known about the fate of live LAB when administered in vivo and about the interaction of these microorganisms with the nasal or gastrointestinal ecosystem. For future applications, it is essential to be able to discriminate the biotherapeutic strain from the endogenous microflora and to unravel the mechanisms underlying the postulated health-beneficial effect. We therefore started to investigate both aspects in a mouse model with two LAB species presently under development as live vaccine vectors, i.e., Lactococcus lactis and Lactobacillus plantarum. We have constructed different expression vectors carrying the gfp (green fluorescent protein [GFP]) gene from the jellyfish Aequoria victoria, and we found that this visible marker was best expressed when placed under the control of the inducible strong nisA promoter from L. lactis. Notably, a threshold amount of GFP was necessary to obtain a bright fluorescent phenotype. We further demonstrated that fluorescent L. plantarum NCIMB8826 can be enumerated and sorted by flow cytometry. Moreover, tagging of this strain with GFP allowed us to visualize its phagocytosis by macrophages in vitro and ex vivo and to trace it in the gastrointestinal tract of mice upon oral administration.  相似文献   

20.
The effect of two putative probiotic strains, Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74, on the control of cholesterol efflux in enterocytes was assessed by focusing on the promotion of ATP-binding cassette sub-family G members 5 and 8 (ABCG5 and ABCG8). Differentiated Caco-2 enterocytes were treated with live bacteria, heat-killed bacteria, a bacterial cell wall fraction, and metabolites and were subjected to cholesterol uptake assay, mRNA analysis, and protein analyses. Following LXR-transfection by incubation with CHO-K1 cells in DNA-lipofectin added media, the luciferase assay was conducted for LXR analysis. Treatment of Caco-2 cells with L. rhamnosus BFE5264 (isolated from traditional fermented Maasai milk) and L. plantarum NR74 (isolated from Korean kimchi) resulted in the up-regulation of LXR, concomitantly with the elevated expression of ABCG5 and ABCG8. This was associated with the promotion of cholesterol efflux at significantly higher levels compared to the positive control strain L. rhamnosus GG (LGG). The experiment with CHO-K1 cells confirmed up-regulation of LXR-beta by the test strains, and treatment with the live L. rhamnosus BFE5264 and L. plantarum NR74 strains significantly increased cholesterol efflux. Heat-killed cells and cell wall fractions of both LAB strains induced the upregulation of ABCG5/8 through LXR activation. By contrast, LAB metabolites did not show any effect on ABCG5/8 and LXR expression. Data from this study suggest that LAB strains, such as L. rhamnosus BFE5264 and L. plantarum NR74, may promote cholesterol efflux in enterocytes, and thus potentially contribute to the prevention of hypercholesterolemia and atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号