首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcus aureus is a major human pathogen, first recognized as a leading cause of hospital-acquired infections. Community-associated S. aureus (CA-SA) pose a greater threat due to increase in severity of infection and disease among children and healthy adults. CA-SA strains in India are genetically diverse, among which is the sequence type (ST) 772, which has now spread to Australia, Europe and Japan. Towards understanding the genetic characteristics of ST772, we obtained draft genome sequences of five relevant clinical isolates and studied the properties of their PVL-carrying prophages, whose presence is a defining hallmark of CA-SA. We show that this is a novel prophage, which carries the structural genes of the hlb-carrying prophage and includes the sea enterotoxin. This architecture probably emerged early within the ST772 lineage, at least in India. The sea gene, unique to ST772 PVL, despite having promoter sequence characteristics typical of low expression, appears to be highly expressed during early phase of growth in laboratory conditions. We speculate that this might be a consequence of its novel sequence context. The crippled nature of the hlb-converting prophage in ST772 suggests that widespread mobility of the sea enterotoxin might be a selective force behind its ‘transfer’ to the PVL prophage. Wild type ST772 strains induced strong proliferative responses as well as high cytotoxic activity against neutrophils, likely mediated by superantigen SEA and the PVL toxin respectively. Both proliferation and cytotoxicity were markedly reduced in a cured ST772 strain indicating the impact of the phage on virulence. The presence of SEA alongside the genes for the immune system-modulating PVL toxin may contribute to the success and virulence of ST772.  相似文献   

2.
The Mediterranean is home to a rich history of medical traditions that have developed under the influence of diverse cultures over millennia. Today, many such traditions are still alive in the folk medical practices of local people. Investigation of botanical folk medicines used in the treatment of skin and soft tissue infections led us to study Castanea sativa (European Chestnut) for its potential antibacterial activity. Here, we report the quorum sensing inhibitory activity of refined and chemically characterized European Chestnut leaf extracts, rich in oleanene and ursene derivatives (pentacyclic triterpenes), against all Staphylococcus aureus accessory gene regulator (agr) alleles. We present layers of evidence of agr blocking activity (IC50 1.56–25 μg mL-1), as measured in toxin outputs, reporter assays hemolytic activity, cytotoxicity studies, and an in vivo abscess model. We demonstrate the extract’s lack of cytotoxicity to human keratinocytes and murine skin, as well as lack of growth inhibitory activity against S. aureus and a panel of skin commensals. Lastly, we demonstrate that serial passaging of the extract does not result in acquisition of resistance to the quorum quenching composition. In conclusion, through disruption of quorum sensing in the absence of growth inhibition, this study provides insight into the role that non-biocide inhibitors of virulence may play in future antibiotic therapies.  相似文献   

3.
Staphylococcus (S.) aureus is an important pathogen causing various infections including those of the skin. Keratinocytes are able to sense invading S. aureus and to initiate a fast defense reaction by the rapid release of innate defense mediators such as antimicrobial peptides and cytokines. There is increasing evidence that the cytokines IL-1alpha and IL-1beta, which both signal through the IL-1 receptor, play an important role in cutaneous defense against S. aureus. The aim of this study was to gain more insight into the underlying mechanisms leading to the S. aureus-induced IL-1alpha and IL-1beta expression in keratinocytes. Infection of human primary keratinocytes with S. aureus led to the induction of gene expression and protein secretion of IL-1alpha and IL-1beta. Full S. aureus-induced IL-1 protein release required the inflammasome components caspase-1 and ASC (apoptosis-associated speck-like protein containing a CARD) whereas gene induction of IL-1alpha and IL-beta by S. aureus was not dependent on caspase-1 and ASC. Since patients receiving anti-cancer therapy by inhibition of the epidermal growth factor receptor (EGFR) often suffer from skin infections caused by S. aureus we additionally evaluated whether the EGFR pathway may be involved in the IL-1alpha and IL-1beta induction by S. aureus. Inactivation of the EGFR with a blocking antibody decreased the S. aureus-mediated IL-1alpha and IL-1beta induction in primary keratinocytes. Moreover, the use of siRNA experiments revealed that ADAM17 (A Disintegrin and A Metalloprotease 17), a metalloproteinase known to mediate the shedding and release of EGFR ligands, was required for full induction of IL-1alpha and IL-1beta in keratinocytes infected with S. aureus. A failure of keratinocytes to adequately upregulate IL-1alpha and IL-1beta may promote S. aureus skin infections.  相似文献   

4.
All Staphylococcus aureus genomes contain a genomic island, which is termed νSaα and characterized by two clusters of tandem repeat sequences, i.e. the exotoxin (set) and ''lipoprotein-like'' genes (lpl). Based on their structural similarities the νSaα islands have been classified as type I to IV. The genomes of highly pathogenic and particularly epidemic S. aureus strains (USA300, N315, Mu50, NCTC8325, Newman, COL, JH1 or JH9) belonging to the clonal complexes CC5 and CC8 bear a type I νSaα island. Since the contribution of the lpl gene cluster encoded in the νSaα island to virulence is unclear to date, we deleted the entire lpl gene cluster in S. aureus USA300. The results showed that the mutant was deficient in the stimulation of pro-inflammatory cytokines in human monocytes, macrophages and keratinocytes. Purified lipoprotein Lpl1 was further shown to elicit a TLR2-dependent response. Furthermore, heterologous expression of the USA300 lpl cluster in other S. aureus strains enhanced their immune stimulatory activity. Most importantly, the lpl cluster contributed to invasion of S. aureus into human keratinocytes and mouse skin and the non-invasive S. carnosus expressing the lpl gene cluster became invasive. Additionally, in a murine kidney abscess model the bacterial burden in the kidneys was higher in wild type than in mutant mice. In this infection model the lpl cluster, thus, contributes to virulence. The present report is one of the first studies addressing the role of the νSaα encoded lpl gene cluster in staphylococcal virulence. The finding that the lpl gene cluster contributes to internalization into non-professional antigen presenting cells such as keratinocytes highlights the lpl as a new cell surface component that triggers host cell invasion by S. aureus. Increased invasion in murine skin and an increased bacterial burden in a murine kidney abscess model suggest that the lpl gene cluster serves as an important virulence factor.  相似文献   

5.
Staphylococcus aureus readily infects humans, causing infections from mild superficial skin infections to lethal bacteremia and endocarditis. Transporters produced by S. aureus allow the pathogen to adapt to a variety of settings, including survival at sites of infection and in the presence of antibiotics. The native functions of many transporters are unknown, but their potential dual contribution to fitness and antimicrobial resistance highlights their importance in staphylococcal infections. Here, we show that S. aureus NorD, a newly recognized efflux pump of the major facilitator superfamily, contributes to fitness in a murine subcutaneous abscess model. In community-associated methicillin-resistant S. aureus (CA-MRSA) strain MW2, norD was selectively upregulated 36-fold at the infection site relative to growth in vitro, and the norD mutant demonstrated significant fitness impairment in abscesses, with fitness 20- to 40-fold lower than that of the parent MW2 strain. Plasmid-encoded NorD could complement the fitness defect of the MW2 norD mutant. Chromosomal norD expression is polycistronic with the upstream oligopeptide permease genes (opp1ABCDF), which encode an ABC oligopeptide transporter. Both norD and opp1 were upregulated in abscesses and iron-restricted culture medium and negatively regulated by Fur, but only NorD contributed to fitness in the murine abscess model.  相似文献   

6.
We investigated the population structure of Staphylococcus aureus clonal complex CC121 by mutation discovery at 115 genetic housekeeping loci from each of 154 isolates, sampled on five continents between 1953 and 2009. In addition, we pyro-sequenced the genomes from ten representative isolates. The genome-wide SNPs that were ascertained revealed the evolutionary history of CC121, indicating at least six major clades (A to F) within the clonal complex and dating its most recent common ancestor to the pre-antibiotic era. The toxin gene complement of CC121 isolates was correlated with their SNP-based phylogeny. Moreover, we found a highly significant association of clinical phenotypes with phylogenetic affiliations, which is unusual for S. aureus. All isolates evidently sampled from superficial infections (including staphylococcal scalded skin syndrome, bullous impetigo, exfoliative dermatitis, conjunctivitis) clustered in clade F, which included the European epidemic fusidic-acid resistant impetigo clone (EEFIC). In comparison, isolates from deep-seated infections (abscess, furuncle, pyomyositis, necrotizing pneumonia) were disseminated in several clades, but not in clade F. Our results demonstrate that phylogenetic lineages with distinct clinical properties exist within an S. aureus clonal complex, and that SNPs serve as powerful discriminatory markers, able to identify these lineages. All CC121 genomes harboured a 41-kilobase prophage that was dissimilar to S. aureus phages sequenced previously. Community-associated MRSA and MSSA from Cambodia were extremely closely related, suggesting this MRSA arose in the region.  相似文献   

7.
8.
Leukocidin ED (LukED) is a pore-forming toxin produced by Staphylococcus aureus, which lyses host cells and promotes virulence of the bacteria. LukED enables S. aureus to acquire iron by lysing erythrocytes, which depends on targeting the host receptor Duffy antigen receptor for chemokines (DARC). The toxin also targets DARC on the endothelium, contributing to the lethality observed during bloodstream infection in mice. LukED is comprised of two monomers: LukE and LukD. LukE binds to DARC and facilitates hemolysis, but the closely related Panton–Valentine leukocidin S (LukS-PV) does not bind to DARC and is not hemolytic. The interaction of LukE with DARC and the role this plays in hemolysis are incompletely characterized. To determine the domain(s) of LukE that are critical for DARC binding, we studied the hemolytic function of LukE–LukS-PV chimeras, in which areas of sequence divergence (divergence regions, or DRs) were swapped between the toxins. We found that two regions of LukE''s rim domain contribute to hemolysis, namely residues 57–75 (DR1) and residues 182–196 (DR4). Interestingly, LukE DR1 is sufficient to render LukS-PV capable of DARC binding and hemolysis. Further, LukE, by binding DARC through DR1, promotes the recruitment of LukD to erythrocytes, likely by facilitating LukED oligomer formation. Finally, we show that LukE targets murine Darc through DR1 in vivo to cause host lethality. These findings expand our biochemical understanding of the LukE–DARC interaction and the role that this toxin-receptor pair plays in S. aureus pathophysiology.  相似文献   

9.

Background

Antibiotic-resistant Staphylococcus aureus infections have increased dramatically in the community, yet S. aureus nasal colonization has remained stable. The objectives of this study were to determine if S. aureus colonization is a useful proxy measure to study disease transmission and infection in community settings, and to identify potential community reservoirs.

Methodology/Principal Findings

Randomly selected households in Northern Manhattan, completed a structured social network questionnaire and provided nasal swabs that were typed by pulsed field gel electrophoresis to identify S. aureus colonizing strains. The main outcome measures were: 1) colonization with S. aureus; and 2) recent serious skin infection. Risk factor analyses were conducted at both the individual and the household levels; logistic regression models identified independent risks for household colonization and infection.

Results

321 surveyed households contained 914 members. The S. aureus prevalence was 25% and MRSA was 0.4%. More than 40% of households were colonized. Recent antibiotic use was the only significant correlate for household colonization (p = .002). Seventy-eight (24%) households reported serious skin infection. In contrast with colonization, five of the six risk factors that increased the risk of skin infection in the household at the univariate level remained independently significant in multivariable analysis: international travel, sports participation, surgery, antibiotic use and towel sharing. S. aureus colonization was not significantly associated with serious skin infection in any analysis. Among multiperson households with more than one person colonized, 50% carried the same strain.

Conclusions/Significance

The lack of association between S. aureus nasal colonization and serious skin infection underscores the need to explore alternative venues or body sites that may be crucial to transmission. Moreover, the magnitude of colonization and infection within the household suggests that households are an underappreciated and substantial community reservoir.  相似文献   

10.
Non-aureus staphylococci (NAS) and Staphylococcus aureus are pathogens that cause bovine mastitis, a costly disease for dairy farmers, however; many NAS are considered part of the normal udder microbiota. It has been suggested that through a mechanism that remains to be elucidated, NAS intramammary colonization can prevent subsequent infection with other bacterial pathogens. This study shows that in a murine mastitis model, secondary Staph. aureus intramammary colonization is reduced by exoproducts from Staph. chromogenes and Staph. simulans, both NAS, while Streptococcus spp. exoproducts have much less ability to affect the course of the infection caused by S. aureus.  相似文献   

11.
Atopic eczema (AE) is associated with Staphylococcus aureus (S. aureus) colonization and skin barrier dysfunction, often measured by increased transepidermal water loss (TEWL). In the present study, the primary aim was to see whether S. aureus colonization in the vestibulum nasi and/or fauces was associated with increased TEWL in infants with healthy skin and infants with eczema. Secondarily, we aimed to investigate whether TEWL measurements on non-lesional skin on the lateral upper arm is equivalent to volar forearm in infants. In 167 of 240 infants, recruited from the general population, TEWL measurements on the lateral upper arm and volar forearm, using a DermaLab USB, fulfilled our environmental requirements. The mean of three TEWL measurements from each site was used for analysis. The infants were diagnosed with no eczema (n = 110), possible AE (n = 28) or AE (n = 29). DNA samples were analysed for mutations in the filaggrin gene (FLG). Bacterial cultures were reported positive with the identification of at least one culture with S. aureus from vestibulum nasi and/or fauces. S. aureus colonization, found in 89 infants (53%), was not associated with increased TEWL (i.e. TEWL in the upper quartile), neither on the lateral upper arm or volar forearm (p = 0.08 and p = 0.98, respectively), nor with AE (p = 0.10) or FLG mutation (p = 0.17). TEWL was significantly higher on both measuring sites in infants with AE compared to infants with possible AE and no eczema. FLG mutation was significantly associated with increased TEWL, with a 47% difference in TEWL. We conclude that S. aureus in vestibulum nasi and/or fauces was not associated with TEWL, whereas TEWL measurements on the lateral upper arm and volar forearm appear equally appropriate in infants.  相似文献   

12.
Skin barrier disruption and dermal inflammation are key phenotypes of atopic dermatitis (AD). Staphylococcus aureus secretes extracellular vesicles (EVs), which are involved in AD pathogenesis. Here, we evaluated the role of EVs-associated α-hemolysin derived from S. aureus in AD pathogenesis. α-hemolysin production from S. aureus was detected using western blot analyses. The cytotoxic activity of α-hemolysin on HaCaT keratinocytes was evaluated by measuring cell viability after treating cells with soluble and EVs-associated α-hemolysin. To determine the type of cell death, HaCaT keratinocytes were stained with annexin V and 7-AAD. The in vivo effects of α-hemolysin were evaluated by application of soluble and EV-associated α-hemolysin on the mouse skin. The present study showed that increased α-hemolysin was produced by S. aureus colonized on AD patients compared to healthy subjects. α-hemolysin production was also related to AD severity. In addition, EV-associated α-hemolysin was more cytotoxic to HaCaT keratinocytes than soluble α-hemolysin, and α-hemolysin-negative EVs did not induce keratinocyte death. EV-associated α-hemolysin induced necrosis, but soluble α-hemolysin induced apoptosis of keratinocytes. In vivo, skin barrier disruption and epidermal hyperplasia were induced by soluble and EV-associated α-hemolysin. However, AD-like dermal inflammation was only caused by EV-associated α-hemolysin. Moreover, neither skin barrier disruption nor AD-like skin inflammation was induced by α-hemolysin-negative EVs. Taken together, α-Hemolysin secreted from S. aureus, particularly the EV-associated form, induces both skin barrier disruption and AD-like skin inflammation, suggesting that EV-associated α-hemolysin is a novel diagnostic and therapeutic target for the control of AD.  相似文献   

13.

Background

Residents in nursing homes (NHs) always represent potential reservoirs for Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). To our knowledge, there is no epidemiological information up till now that describes the prevalence and molecular characteristics of S. aureus in nursing home residents in Shanghai, China.

Methods

Four hundred and ninety-one unique residents from 7 NHs were enrolled in this study. Specimens were collected among these residents including 491 nasal swabs, 487 axillary swabs and 119 skin swabs. S. aureus isolated and identified from the swabs was characterized according to antimicrobial susceptibility profiling, toxin gene prevalence, and multilocus sequence typing (MLST), spa and SCCmec typing.

Results

Among the 491 residents screened, S. aureus was isolated in 109 residents from 90 nasal swabs (90/491, 18.3%), 29 axillary swabs (29/487, 6.0%), and 22 skin swabs (22/119, 18.5%). Sixty-eight MRSA isolates were detected in 52 residents from 41 nasal carriers, 15 axillary carriers and 12 skin carriers. The overall prevalence rate of S. aureus and MRSA colonization was 22.2% and 10.6% respectively. Ten residents presented S. aureus in all three sample types and 12 residents presented S. aureus in two of the three sample types collected. Molecular analysis revealed CC1 (29.1%) to be the dominant clone in this study, followed by CC398 (19.9%), CC188 (13.5%) and CC5 (12.8%). The most common spa type was t127 (22.0%), followed by t14383 (12.8%) and t002 (10.6%).

Conclusions

A high prevalence of S. aureus and MRSA colonization was revealed in nursing home residents in Shanghai. CC1 was the most common clonal complex and t127 was the most common spa type among NH residents. The data provides an important baseline for future surveillance of S. aureus in NHs in Shanghai and other highly urbanized regions in China. Implementation of infection control strategies must be given high priority in NHs to fight such high prevalence of both MRSA and methicillin-susceptible S. aureus (MSSA).  相似文献   

14.
A comparative genomic microarray comprising 2,457 genes from two whole genomes of S. aureus was employed for the comparative genome hybridization analysis of 50 strains of divergent clonal lineages, including methicillin-resistant S. aureus (MRSA), methicillin-susceptible S. aureus (MSSA), and swine strains in China. Large-scale validation was confirmed via polymerase chain reaction in 160 representative clinical strains. All of the 50 strains were clustered into seven different complexes by phylogenetic tree analysis. Thirteen gene clusters were specific to different S. aureus clones. Ten gene clusters, including seven known (vSa3, vSa4, vSaα, vSaβ, Tn5801, and phage ϕSa3) and three novel (C8, C9, and C10) gene clusters, were specific to human MRSA. Notably, two global regulators, sarH2 and sarH3, at cluster C9 were specific to human MRSA, and plasmid pUB110 at cluster C10 was specific to swine MRSA. Three clusters known to be part of SCCmec, vSa4 or Tn5801, and vSaα as well as one novel gene cluster C12 with homology with Tn554 of S. epidermidis were identified as MRSA-specific gene clusters. The replacement of ST239-spa t037 with ST239-spa t030 in Beijing may be a result of its acquisition of vSa4, phage ϕSa1, and ϕSa3. In summary, thirteen critical gene clusters were identified to be contributors to the evolution of host specificity and antibiotic resistance in Chinese S. aureus.  相似文献   

15.
Staphylococcus aureus colonizes the nose, throat, skin, and gastrointestinal (GI) tract of humans. GI carriage of S. aureus is difficult to eradicate and has been shown to facilitate the transmission of the bacterium among individuals. Although staphylococcal colonization of the GI tract is asymptomatic, it increases the likelihood of infection, particularly skin and soft tissue infections caused by USA300 isolates. We established a mouse model of persistent S. aureus GI colonization and characterized the impact of selected surface antigens on colonization. In competition experiments, an acapsular mutant colonized better than the parental strain Newman, whereas mutants defective in sortase A and clumping factor A showed impaired ability to colonize the GI tract. Mutants lacking protein A, clumping factor B, poly-N-acetyl glucosamine, or SdrCDE showed no defect in colonization. An S. aureus wall teichoic acid (WTA) mutant (ΔtagO) failed to colonize the mouse nose or GI tract, and the tagO and clfA mutants showed reduced adherence in vitro to intestinal epithelial cells. The tagO mutant was recovered in lower numbers than the wild type strain in the murine stomach and duodenum 1 h after inoculation. This reduced fitness correlated with the in vitro susceptibility of the tagO mutant to bile salts, proteases, and a gut-associated defensin. Newman ΔtagO showed enhanced susceptibility to autolysis, and an autolysin (atl) tagO double mutant abrogated this phenotype. However, the atl tagO mutant did not survive better in the mouse GI tract than the tagO mutant. Our results indicate that the failure of the tagO mutant to colonize the GI tract correlates with its poor adherence and susceptibility to bactericidal factors within the mouse gut, but not to enhanced activity of its major autolysin.  相似文献   

16.

Background

SLURP1 is the causal gene for Mal de Meleda (MDM), an autosomal recessive skin disorder characterized by diffuse palmoplantar keratoderma and transgressive keratosis. Moreover, although SLURP1 likely serves as an important proliferation/differentiation factor in keratinocytes, the possible relation between SLURP1 and other skin diseases, such as psoriasis and atopic dermatitis, has not been studied, and the pathophysiological control of SLURP1 expression in keratinocytes is largely unknown.

Objectives

Our aim was to examine the involvement of SLURP1 in the pathophysiology of psoriasis using an imiquimod (IMQ)-induced psoriasis model mice and normal human epidermal keratinocytes (NHEKs).

Results

SLURP1 expression was up-regulated in the skin of IMQ-induced psoriasis model mice. In NHEKs stimulated with the inflammatory cytokines IL-17, IL-22 and TNF-α, which are reportedly expressed in psoriatic lesions, SLURP1 mRNA expression was significantly up-regulated by IL-22 but not the other two cytokines. The stimulatory effect of IL-22 was completely suppressed in NHEKs treated with a STAT3 inhibitor or transfected with siRNA targeting STAT3. Because IL-22 induces production of antimicrobial proteins in epithelial cells, the antibacterial activity of SLURP1 was assessed against Staphylococcus aureus (S. aureus), which is known to be associated with disease severity in psoriasis. SLURP1 significantly suppressed the growth of S. aureus.

Conclusions

These results indicate SLURP1 participates in pathophysiology of psoriasis by regulating keratinocyte proliferation and differentiation, and by suppressing the growth of S. aureus.  相似文献   

17.
18.
The plethora of virulence factors associated with Staphylococcus aureus make this bacterium an attractive candidate for a molecularly-designed epitope-focused vaccine. This approach, which necessitates the identification of neutralizing epitopes for incorporation into a vaccine construct, is being evaluated for pathogens where conventional approaches have failed to elicit protective humoral responses, like HIV-1 and malaria, but may also hold promise for pathogens like S. aureus, where the elicitation of humoral immunity against multiple virulence factors may be required for development of an effective vaccine. Among the virulence factors employed by S. aureus, animal model and epidemiological data suggest that alpha toxin, a multimeric β-pore forming toxin like protective antigen from Bacillus anthracis, is particularly critical, yet no candidate neutralizing epitopes have been delineated in alpha toxin to date. We have previously shown that a linear determinant in the 2β2-2β3 loop of the pore forming domain of B. anthracis protective antigen is a linear neutralizing epitope. Antibody against this site is highly potent for neutralizing anthrax lethal toxin in vitro and for protection of rabbits in vivo from virulent B. anthracis. We hypothesized that sequences in the β-pore of S. aureus alpha toxin that share structural and functional homology to β-pore sequences in protective antigen would contain a similarly critical neutralizing epitope. Using an in vivo mapping strategy employing peptide immunogens, an optimized in vitro toxin neutralization assay, and an in vivo dermonecrosis model, we have now confirmed the presence of this epitope in alpha toxin, termed the pore neutralizing determinant. Antibody specific for this determinant neutralizes alpha toxin in vitro, and is highly effective for mitigating dermonecrosis and bacterial growth in a mouse model of S. aureus USA300 skin infection. The delineation of this linear neutralizing determinant in alpha toxin could facilitate the development of an epitope-focused vaccine against S. aureus.  相似文献   

19.
20.
In most habitats, microbial life is organized in biofilms, three-dimensional edifices sustained by extracellular polymeric substances that enable bacteria to resist harsh and changing environments. Under multispecies conditions, bacteria can benefit from the polymers produced by other species (“public goods”), thus improving their survival under toxic conditions. A recent study showed that a Bacillus subtilis hospital isolate (NDmed) was able to protect Staphylococcus aureus from biocide action in multispecies biofilms. In this work, we identified ypqP, a gene whose product is required in NDmed for thick-biofilm formation on submerged surfaces and for resistance to two biocides widely used in hospitals. NDmed and S. aureus formed mixed biofilms, and both their spatial arrangement and pathogen protection were mediated by YpqP. Functional ypqP is present in other natural B. subtilis biofilm-forming isolates. However, the gene is disrupted by the SPβ prophage in the weak submerged-biofilm-forming strains NCIB3610 and 168, which are both less resistant than NDmed to the biocides tested. Furthermore, in a 168 laboratory strain cured of the SPβ prophage, the reestablishment of a functional ypqP gene led to increased thickness and resistance to biocides of the associated biofilms. We therefore propose that YpqP is a new and important determinant of B. subtilis surface biofilm architecture, protection against exposure to toxic compounds, and social behavior in bacterial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号