首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Angiogenesis in the lung involves the systemic bronchial vasculature and becomes prominent when chronic inflammation prevails. Mechanisms for neovascularization following pulmonary ischemia include growth factor transit from ischemic parenchyma to upstream bronchial arteries, inflammatory cell migration/recruitment through the perfusing artery, and paracrine effects of lung cells within the left bronchus, the niche where arteriogenesis takes place. We analyzed left lung bronchoalveolar lavage (BAL) fluid and left bronchus homogenates after left pulmonary artery ligation (LPAL) in rats, immediately after the onset of ischemia (0 h), 6 h and 24 h later. Additionally, we tested the effectiveness of dexamethasone on decreasing inflammation (0–24 h LPAL) and angiogenesis at early (3 d LPAL; bronchial endothelial proliferation) and late (14 d LPAL; blood flow) stages. After LPAL (6 h), BAL protein, total inflammatory cells, macrophages, and polymorphonuclear cells increased significantly. In parallel, pro-angiogenic CXC chemokines increased in BAL and the left main-stem bronchus (CXCL1) or only within the bronchus (CXCL2). Dexamethasone treatment reduced total BAL protein, inflammatory cells (total and polymorphonuclear cells), and CXCL1 but not CXCL2 in BAL. By contrast, no decrease was seen in either chemokine within the bronchial tissue, in proliferating bronchial endothelial cells, or in systemic perfusion of the left lung. Our results confirm the presence of CXC chemokines within BAL fluid as well as within the left mainstem bronchus. Despite significant reduction in lung injury and inflammation with dexamethasone treatment, chemokine expression within the bronchial tissue as well as angiogenesis were not affected. Our results suggest that early changes within the bronchial niche contribute to subsequent neovascularization during pulmonary ischemia.  相似文献   

2.
Bronchial vascular angiogenesis takes place in a variety of lung inflammatory conditions such as asthma, cystic fibrosis, lung cancer, and chronic pulmonary thromboembolic disease. However, it is unclear whether neovascularization is predominantly appropriate and preserves lung tissue or whether it contributes further to lung pathology through edema formation and inflammation. In the present study we examined airway and lung parenchymal function 14 days after left pulmonary artery ligation. In rats as well as higher mammals, severe pulmonary ischemia results in bronchial vascular proliferation. Using labeled microspheres, we demonstrated an 18-fold increase in systemic blood flow to the ischemic left lung. Additionally, vascular remodeling extended to the tracheal venules, which showed an average 28% increase in venular diameter. Despite this increase in vascularity, airways resistance was not altered nor was methacholine responsiveness. Since these measurements include the entire lung, we suggest that the normal right lung, which represented 78% of the total lung, obscured the ability to detect a change. When functional indexes such as diffusing capacity, in situ lung volume, and vascular permeability of the left lung could be separated from right lung, significant changes were observed. Thus when comparing average left lung values of rats 14 days after left pulmonary artery ligation to left lungs of rats undergoing sham surgery, diffusing capacity of the left lung decreased by 72%, left lung volume decreased by 38%, and the vascular permeability to protein increased by 58%. No significant differences in inflammatory cell recruitment were observed, suggesting that acute ischemic inflammation had resolved. We conclude that despite the preservation of lung tissue, the proliferating bronchial neovasculature may contribute to a sustained decrement in pulmonary function.  相似文献   

3.
目的:对比分析肺癌患者和肺部非癌性病变肺动脉和主支气管动脉CTA特点。方法:回顾性统计分析82例行高度怀疑肺癌患者的肺部CTA,经病理证实肺癌54例,肺结核球28例,同时选择对照组22例。对比分析肺动脉(Pulmonary artery,PA)内径、主支气管动脉(Bronchial artery,BA)显影率和及其各级分支显影率。结果:肺癌组、肺结核球组和对照组左主支气管动脉显影率分别为83.3%、77.7%和72.7%。右主支气管动脉显影率87.0%、83.3%和68.1%。肺癌组左右主支气管动脉清晰显影率高于肺结核球组和对照组,差异有统计学意义(P0.05)。左右两侧肺癌组PA内径明显大于结核球和对照组,差异有统计学意义(P0.05)。左右侧肺癌组PA显影分级明显高于结核球和对照组,差异有统计学意义(P0.05)。左右双侧PA主干内径差异无统计学意义(P0.05)。结论:肺部癌性病灶动脉供血增加,肺动脉和支气管动脉CTA能够显示肺癌病灶供血情况,可用于临床辅助鉴别诊断影像学不能确诊的肺部病变。  相似文献   

4.
A patient with a dissecting aortic aneurysm, Type 1, developed acute pulmonary edema unexplained by the usual etiologic factors. Pathologic evidence that bronchial arterial circulation was interrupted led us to hypothesize that pulmonary edema could be due to ischemia of the bronchial circulation. To test this hypothesis, two chronic studies were done in dogs. The first study consisted of selective ligation of the right posterior bronchial artery at its origin at the fifth or sixth intercostal artery. After recovery from surgery, biopsies were taken from the ipsilateral and contralateral lung at time periods from 5 hours to 11 days. Ischemic damage was found in seven of eight dogs (87.5%), and was confined to the right lung. Histological examination revealed initial congestion within 8 hours, followed by pulmonary edema within 72 hours, and finally, disruption of alveolar septa with small emphysematous bullae on the eleventh postoperative day. The left lung remained normal in histological appearance. The second study consisted of transplanting the bronchial artery to the pulmonary artery to create a low pressure system and low O(2) content, and to simulate a regional shock situation. In five of six dogs (83.3%), the anastomosis was occluded within 72 hours, probably due to pressure competition from small collateral bronchial circulation. However, in these five dogs, pulmonary vascular resistance increased by 53%, intrapulmonary shunting increased by 83%, and the alveolar-to-arterial oxygen gradient increased by 150 mm Hg. Pulmonary edema was again confined to the right lung. Bronchial arteriograms demonstrated the extensive and variable distribution of the bronchial circulation in dogs. In the sixth dog, the anastomosis remained patent with a left-to-right shunt, due to a larger bronchial arterial collateral circulation. In this animal, the pulmonary arterial resistance, intrapulmonary shunting, and alveolar-arterial O(2) gradient were normal. Pulmonary edema was absent in lung biopsies. Bronchial circulation is discussed with respect to its clinical implications for lung transplants, shock, thoracic aneurysms, and mediastinal surgery. The results of this study suggest that the systemic bronchial circulation is important for normal lung function.  相似文献   

5.

Background

Systemic neovascularization of the lung during chronic ischemia has been observed in all mammals studied. However, the proteins that orchestrate the complex interaction of new vessel growth and tunneling through lung tissue matrix have not been described. Although previous work has demonstrated the CXC chemokines are essential growth factors in the process of angiogenesis in mice and rats, key matrix proteins have not been identified.

Methods

Since the degradation of chemokines has been shown to be dependent on metalloproteinases (MMP), we first surveyed gene expression patterns (real time RT-PCR) of several lung matrix proteins in DBA/J (D2) mice and C57Bl/6 (B6) mice, strains known to have divergent parenchymal responses in other lung disease models. We studied changes in the time course of MMP-12 activity in D2 and B6 mice. Functional angiogenesis was determined 14 days after the onset of complete left lung ischemia induced by left pulmonary artery ligation (LPAL), using fluorescent microspheres.

Results

Our results confirmed higher levels of MMP-12 gene expression in D2 mice relative to B6, which corresponded to a phenotype of minimal systemic angiogenesis in D2 mice and more robust angiogenesis in B6 mice (p < 0.01). MMP-12 activity decreased over the course of 14 days in B6 mice whereas it increased in D2 mice (p < 0.05). MMP-12 was associated largely with cells expressing the macrophage marker F4/80. Genetic deficiency of MMP-12 resulted in significantly enhanced neovascularization (p < 0.01 from B6).

Conclusion

Taken together, our results suggest macrophage-derived MMP-12 contributes to angiostasis in the ischemic lung.  相似文献   

6.
A role for inflammation in modulating the extent of angiogenesis has been shown for a number of organs. The present study was undertaken to evaluate the importance of leukocyte subpopulations for systemic angiogenesis of the lung after left pulmonary artery ligation (LPAL) in a mouse model of chronic pulmonary thromboembolism. Since we (24) previously showed that depletion of neutrophils did not alter the angiogenic outcome, we focused on the effects of dexamethasone pretreatment (general anti-inflammatory) and gadolinium chloride treatment (macrophage inactivator) and studied Rag-1(-/-) mice (T/B lymphocyte deficient). We measured inflammatory cells in bronchoalveolar lavage fluid and lung homogenate macrophage inflammatory protein-2 (MIP-2) and IL-6 protein levels within 24 h after LPAL and systemic blood flow to the lung 14 days after LPAL with labeled microspheres as a measure of angiogenesis. Blood flow to the left lung was significantly reduced after dexamethasone treatment compared with untreated control LPAL mice (66% decrease; P < 0.05) and significantly increased in T/B lymphocyte-deficient mice (88% increase; P < 0.05). Adoptive transfer of splenocytes (T/B lymphocytes) significantly reversed the degree of angiogenesis observed in the Rag-1(-/-) mice back to the level of control LPAL. Average number of lavaged macrophages for each group significantly correlated with average blood flow in the study groups (r(2) = 0.9181; P = 0.01 different from 0). Despite differences in angiogenesis, left lung homogenate MIP-2 and IL-6 did not differ among study groups. We conclude that inflammatory cells modulate the degree of angiogenesis in this lung model where lymphocytes appear to limit the degree of neovascularization, whereas monocytes/macrophages likely promote angiogenesis.  相似文献   

7.
The multifunctional cytokine interleukin (IL)-6 has been shown to modulate inflammation and angiogenesis. In a mouse model of lung angiogenesis induced by chronic left pulmonary artery ligation (LPAL), we previously showed increased expression of IL-6 mRNA in lung homogenates 4 h after the onset of pulmonary ischemia. To determine whether IL-6 influences both new vessel growth and inflammatory cell influx, we studied wild-type (WT) and IL-6-deficient C57Bl/6J (KO) mice after LPAL (4 h and 1, 7, 14 days). We measured IL-6 protein of the lung by ELISA, the lavage cell profile of the left lung, and new systemic vessel growth with radiolabeled microspheres (14 days after LPAL) in WT and KO mice. We confirmed a 2.4-fold increase in IL-6 protein in the left lung of WT mice compared with right lung 4 h after LPAL. A significant increase in lavaged neutrophils (7.5% of total cells) was observed only in WT mice 4 h after LPAL. New vessel growth was significantly attenuated in KO relative to WT (0.7 vs. 1.9% cardiac output). In an additional series, treatment of WT mice with anti-neutrophil antibody demonstrated a reduction in lavaged neutrophils 4 h after LPAL; however, IL-6 protein remained elevated and neovascularization to the left lung (2.3% cardiac output) was not altered. These results demonstrate that IL-6 plays an important modulatory role in lung angiogenesis, but the changes are not dependent on trapped neutrophils.  相似文献   

8.
Pulmonary ischemia resulting from chronic pulmonary embolism leads to proliferation of the systemic circulation within and surrounding the lung. However, it is not clear how well alveolar tissue is sustained during the time of complete pulmonary ischemia. In the present study, we investigated how pulmonary ischemia after left pulmonary artery ligation (LPAL) would alter lung mechanical properties and morphology. In this established mouse model of lung angiogenesis after chronic LPAL (10), we evaluated lung function and structure before (3 days) and after (14 days) a functional systemic circulation to the left lung is established. Age-matched na?ve and sham-operated C57Bl/6 mice and mice undergoing chronic LPAL were studied. Left and right lung pressure-volume relationships were determined. Next, lungs were inflated in situ with warmed agarose (25-30 cmH(2)O) and fixed, and mean chord lengths (MCL) of histological sections were quantified. MCL of na?ve mice averaged 43.9 +/- 1.8 mum. No significant changes in MCL were observed at either time point after LPAL. Left lung volumes and specific compliances were significantly reduced 3 days after LPAL. However, by 14 days after LPAL, lung pressure-volume relationships were not different from controls. These results suggest that severe pulmonary ischemia causes changes in lung mechanics early after LPAL that are reversed by the time a new systemic vasculature is known to perfuse pulmonary capillaries. The LPAL model thus affords a unique opportunity to study lung functional responses to tissue ischemia and subsequent recovery.  相似文献   

9.
Angiogenesis after pulmonary ischemia is initiated by reactive O(2) species and is dependent on CXC chemokine growth factors, and its magnitude is correlated with the number of lavaged macrophages. After complete obstruction of the left pulmonary artery in mice, the left lung is isolated from the peripheral circulation until 5-7 days later, when a new systemic vasculature invades the lung parenchyma. Consequently, this model offers a unique opportunity to study the differentiation and/or proliferation of monocyte-derived cells within the lung. In this study, we questioned whether macrophage subpopulations were differentially expressed and which subset contributed to growth factor release. We characterized the change in number of all macrophages (MHCII(int), CD11C+), alveolar macrophages (MHCII(int), CD11C+, CD11B-) and mature lung macrophages (MHCII(int), CD11C+, CD11B+) in left lungs from mice immediately (0 h) or 24 h after left pulmonary artery ligation (LPAL). In left lung homogenates, only lung macrophages increased 24 h after LPAL (vs. 0 h; p<0.05). No changes in proliferation were seen in any subset by PCNA expression (0 h vs. 24 h lungs). When the number of monocytic cells was reduced with clodronate liposomes, systemic blood flow to the left lung 14 days after LPAL decreased by 42% (p<0.01) compared to vehicle controls. Furthermore, when alveolar macrophages and lung macrophages were sorted and studied in vitro, only lung macrophages secreted the chemokine MIP-2α (ELISA). These data suggest that ischemic stress within the lung contributes to the differentiation of immature monocytes to lung macrophages within the first 24 h after LPAL. Lung macrophages but not alveolar macrophages increase and secrete the proangiogenic chemokine MIP-2α. Overall, an increase in the number of lung macrophages appears to be critical for neovascularization in the lung, since clodronate treatment decreased their number and attenuated functional angiogenesis.  相似文献   

10.
A20 is a zinc finger protein associated with hypoxia. As chronic hypoxia is responsible for intimal hyperplasia and disordered angiogenesis of pulmonary artery, which are histological hallmarks of pulmonary artery hypertension, we intended to explore the role of A20 in angiogenesis of pulmonary artery endothelial cells (ECs). Here, we found a transient elevation of A20 expression in the lung tissues from hypoxic rats compared with normoxic controls. This rapid enhancement was mainly detected in the endothelium, and similar results were reproduced in vitro. During early hypoxia, genetic inhibition of A20 increased proliferation in pulmonary artery ECs, linking to advanced cell cycle progression as well as microtubule polymerization, and aggravated angiogenic effects including tube formation, cell migration and adhesion molecules expression. In addition, a negative feedback loop between nuclear factor‐kappa B and A20 was confirmed. Our findings provide evidence for an adaptive role of A20 against pulmonary artery ECs angiogenesis via nuclear factor‐kappa B activation.  相似文献   

11.
The lungs of three silvered lutongs (Presbytis cristata) were examined. The right and left lungs have the dorsal, lateral, ventral, and medial bronchiole systems, which arise from the corresponding sides of both bronchi, respectively. Bronchioles in the dorsal and lateral bronchiole systems are well developed, whereas those in the ventral and medial bronchiole systems are poorly developed and lack some portions. According to the fundamental structure of bronchial ramifications of the mammalian lung (Nakakuki, 1975, 1980), the right lung consists of the upper, middle, lower, and accessory lobes, whereas the left lung consists of a bilobed middle lobe and a lower lobe, in which the right upper lobe is extremely well developed. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole, and then across the dorsal side of the right middle lobe bronchiole. Initially it runs along the lateral side of the right bronchus and then gradually comes to run along the dorsal side. During its course, it gives off branches which run mainly along the dorsal or lateral side of the bronchiole. The left pulmonary artery runs across the dorsal side of the left middle lobe bronchiole, and then follows the same course as that in the right lower lobe. The pulmonary veins run medially or ventrally to the bronchioles, and finally enter the left atrium as four or five large veins.  相似文献   

12.
The author injected various colored celluloid solutions into the bronchial tree and blood vessels of the lungs of five adult Japanese monkeys (Macaca fuscata) in order to prepare cast specimens. These specimens were investigated from the comparative anatomical viewpoint to determine whether the bronchial ramification theory of the mammalian lung (Nakakuki, 1975, 1980) can be applied to the Japanese monkey lung or not. The bronchioles are arranged stereotaxically like those of other mammalian lungs. The four bronchiole systems, dorsal, ventral, medial, and lateral, arise from both bronchi, respectively, although some bronchioles are lacking. In the right lung, the bronchioles form the upper, middle, accessory, and lower lobes, while in the left lung, the upper and accessory lobes are lacking and bi-lobed middle and lower lobes are formed. In the right lung, the upper lobe is formed by the first branch of the dorsal bronchiole system. The middle lobe is the first branch of the lateral bronchiole system. The accessory lobe is the first branch of the ventral bronchiole system. The lower lobe is formed by the remaining bronchioles of the four bronchiole systems. In the left lung, the middle lobe is formed by the first branch of the lateral bronchiole system. The lower lobe is formed by the remaining bronchioles. Thus, the bronchial ramification theory of the mammalian lung applied well to the Japanese monkey lung. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole. It then runs along the dorso-lateral side of the right bronchus between the dorsal bronchiole system and the lateral bronchiole system. On its way, it gives off branches of the pulmonary artery which run along the dorsal or lateral side of each bronchiole except in the ventral bronchiole system. In the ventral bronchiole system, the branches run along the ventral side of the bronchioles. The distributions of the pulmonary artery in the left lung are the same as those in the right lung. The pulmonary veins do not always run along the bronchioles. Most of them run on the medial or ventral side of the bronchioles. Some of them run between the pulmonary segments. In the right lung, these pulmonary veins finally form the right upper lobe vein, right middle lobe vein and the right lower lobe pulmonary venous trunk before entering the left atrium. However, the right accessory lobe vein runs on the dorsal side of the bronchiole and pours into the right lower lobe pulmonary venous trunk. In four cases out of the five examples, part of the right lower lobe veins pour into the right middle lobe vein, while the others enter the right lower lobe pulmonary venous trunk. In the left lung, the branches of the pulmonary veins finally form the left middle lobe vein and the left lower lobe pulmonary venous trunk.  相似文献   

13.
We previously showed increased expression of the ELR+, CXC chemokines in the lung after left pulmonary artery obstruction. These chemokines have been shown in other systems to bind their G protein-coupled receptor, CXCR(2), and promote systemic endothelial cell proliferation, migration, and capillary tube formation. In the present study, we blocked CXCR(2) in vivo using a neutralizing antibody and also studied mice that were homozygous null for CXCR(2). To estimate the extent of neovascularization in this model, we measured systemic blood flow to the left lung 14 days after left pulmonary artery ligation (LPAL). We found blood flow significantly reduced (67% decrease) with neutralizing antibody treatment compared with controls. However, blood flow was not altered in the CXCR(2)-deficient mice compared with wild-type controls after LPAL. To test for ligand availability, we measured macrophage inflammatory protein (MIP)-2 in lung homogenates after LPAL, because this is the predominant CXC chemokine previously shown to be increased after LPAL (22). MIP-2 protein was two- to fourfold higher in the left lung relative to the right lung in all treatment groups 4 h after LPAL and this increase did not differ among groups. We speculate that the CXCR(2)-deficient mice have compensatory mechanisms that mitigate their lack of gene expression and conclude that CXCR(2) contributes to chemokine-induced systemic angiogenesis after pulmonary artery obstruction.  相似文献   

14.
Cellular remodeling during angiogenesis in the lung is poorly described. Furthermore, it is the systemic vasculature of the lung and surrounding the lung that is proangiogenic when the pulmonary circulation becomes impaired. In a mouse model of chronic pulmonary thromboembolism, after left pulmonary artery ligation (LPAL), the intercostal vasculature, in proximity to the ischemic lung, proliferates and invades the lung (12). In the present study, we performed a detailed investigation of the kinetics of remodeling using histological sections of the left lung of C57Bl/6J mice after LPAL (4 h to 20 days) or after sham surgery. New vessels were seen within the thickened visceral pleura 4 days after LPAL predominantly in the upper portion of the left lung. Connections between new vessels within the pleura and pulmonary capillaries were clearly discerned by 7 days after LPAL. The visceral pleura and the lung parenchyma showed intense tissue remodeling, as evidenced by markedly elevated levels of both proliferating cell nuclear antigen and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling positive cells. Rapidly dividing cells were predominantly macrophages and type II pneumocytes. The increased apoptotic activity was further quantified by caspase-3 activity, which showed a sixfold increase relative to naive lungs, by 24 h after LPAL. Because sham surgeries had little effect on measured parameters, we conclude that both thoracic wound healing and pulmonary ischemia are required for systemic neovascularization.  相似文献   

15.
The lung is unique in its double sources of perfusion from the pulmonary and systemic circulations. One striking difference between the two circulations is the capacity for angiogenesis. The bronchial circulation has a capacity that seems quite similar to all systemic arteries, whereas the pulmonary circulation seems relatively inert in this regard. Extra-alveolar pulmonary arteries can grow somewhat in length, and septal capillaries seem to have the capability of reforming, but these processes do not seem to occur with nearly the same intensity associated with the bronchial arteries. In this review, we emphasize these differences between the two circulations of the lung, anticipating that future research will allow more focused probing into the molecular signaling that regulates the novel mechanistic and pathological pathways of each.  相似文献   

16.
Discrepancies exist between experimental measurements of the systemic blood flow to sheep lung by use of microsphere techniques and flow probes on the bronchial artery. In these studies, we simultaneously measured the blood flow through the bronchial artery, using a transit time flow probe, and the systemic blood flow to left lung, using radioactive microspheres. All measurements were made on conscious sheep previously prepared with chronic catheterizations of the left atrium, aorta, and vena cava and a flow probe around the bronchial artery. Inflatable occluder cuffs were placed around the pulmonary and bronchoesophageal arteries. Bronchial artery blood flow in six sheep was 25.3 +/- 5.2 ml/min or 0.4% of the cardiac output. Systemic blood flow to left lung, measured with microspheres, was 54.1 +/- 14.2 ml/min. Calculated systemic blood flow to that portion of sheep lung perfused by the bronchial artery was 127.6 +/- 35.3 ml/min or 1.9% of cardiac output. Occlusion of the bronchoesophageal artery reduced bronchial artery flow to near zero, whereas total systemic blood to the lung was reduced by only 55%. Blood flow to the intraparenchymal cartilaginous airways was reduced 60-90% after occlusion of the bronchoesophageal artery. Sheep, like most mammals, have multiple and complex systemic arterial inputs to the lungs. We conclude that multiple branches of the bronchoesophageal artery provide most but not all of the systemic blood flow to the intraparenchymal cartilaginous airways but that over one-half of the total systemic blood flow to sheep lung comes from sources other than the common bronchial artery.  相似文献   

17.
Selective delivery of chemotherapy to an affected organ or region of the body promises improved drug efficacy for the targeted area while minimizing the systemic exposure and toxicity. Several intravascular surgical techniques to achieve targeted regional lung chemotherapy have been developed. Investigations have been carried out to determine the feasibility, safety, and efficacy of these techniques in the primary or adjuvant setting with the intent to palliate or cure. This overview describes the history, rationale, technical aspects, and clinical experience of four regional lung chemotherapy techniques delivered by vascular manipulations including bronchial artery infusion, pulmonary artery chemoembolization, isolated lung perfusion, and lung suffusion.  相似文献   

18.
Hyaluronan (HA), a glycosaminoglycan critical to the lung extracellular matrix, has been shown to dissociate into low-molecular-weight (LMW) HA fragments following exposure to injurious stimuli. In the present study we questioned whether lung HA changed during ischemia and whether changes had an effect on subsequent angiogenesis. After left pulmonary artery ligation (LPAL) in mice, we analyzed left lung homogenates immediately after the onset of ischemia (0 h) and intermittently for 14 days. The relative expression of HA synthase (HAS)1, HAS2, and HAS3 was determined by real-time RT-PCR, total HA in the lung was measured by an ELISA-like assay, gel electrophoresis was performed to determine changes in HA size distribution, and the activity of hyaluronidases was determined by zymography. A 50% increase in total HA was measured 16 h after the onset of ischemia and remained elevated for up to 7 days. Furthermore, a fourfold increase in LMW HA fragments (495-30 kDa) was observed by 4 h after LPAL. Both HAS1 and HAS2 showed increased expression 4-16 h after LPAL, yet no changes were seen in hyaluronidase activity. These results suggest that both HA fragmentation and activation of HA synthesis contribute to increased HA levels during lung ischemia. Delivery of LMW HA fragments in an in vitro tube formation assay or directly to the ischemic mouse lung in vivo both resulted in increased angiogenesis. We conclude that ischemic injury results in matrix fragmentation, which leads to stimulation of neovascularization.  相似文献   

19.
Asthma and chronic obstructive pulmonary disease remain a global health problem, with increasing morbidity and mortality. Despite differences in the causal agents, both diseases exhibit various degrees of inflammatory changes, structural alterations of the airways leading to airflow limitation. The existence of transient disease phenotypes which overlap both diseases and which progressively decline the lung function has complicated the search for an effective therapy. Important characteristics of chronic airway diseases include airway and vascular remodeling, of which the molecular mechanisms are complex and poorly understood. Recently, we and others have shown that airway smooth muscle (ASM) cells are not only structural and contractile components of airways, rather they bear capabilities of producing large number of pro-inflammatory and mitogenic factors. Increase in size and number of blood vessels both inside and outside the smooth muscle layer as well as hyperemia of bronchial vasculature are contributing factors in airway wall remodeling in patients with chronic airway diseases, proposing for the ongoing mechanisms like angiogenesis and vascular dilatation. We believe that vascular changes directly add to the airway narrowing and hyper-responsiveness by exudation and transudation of proinflammatory mediators, cytokines and growth factors; facilitating trafficking of inflammatory cells; causing oedema of the airway wall and promoting ASM accumulation. One of the key regulators of angiogenesis, vascular endothelial growth factor in concerted action with other endothelial mitogens play pivotal role in regulating bronchial angiogenesis. In this review article we address recent advances in pulmonary angiogenesis and remodelling that contribute in the pathogenesis of chronic airway diseases.  相似文献   

20.
Information is rapidly emerging regarding the important role of the arterial vasa vasorum in a variety of systemic vascular diseases. In addition, increasing evidence suggests that progenitor cells of bone marrow (BM) origin may contribute to postnatal neovascularization and/or vascular wall thickening that is characteristic in some forms of systemic vascular disease. Little is known regarding postnatal vasa formation and the role of BM-derived progenitor cells in the setting of pulmonary hypertension (PH). We sought to determine the effects of chronic hypoxia on the density of vasa vasorum in the pulmonary artery and to evaluate if BM-derived progenitor cells contribute to the increased vessel wall mass in a bovine model of hypoxia-induced PH. Quantitative morphometric analyses of lung tissue from normoxic and hypoxic calves revealed that hypoxia results in a dramatic expansion of the pulmonary artery adventitial vasa vasorum. Flow cytometric analysis demonstrated that cells expressing the transmembrane tyrosine kinase receptor for stem cell factor, c-kit, are mobilized from the BM in the circulation in response to hypoxia. Immunohistochemistry revealed an increase in the expression of c-kit+ cells together with vascular endothelial growth factor, fibronectin, and thrombin in the hypoxia-induced remodeled pulmonary artery vessel wall. Circulating mononuclear cells isolated from neonatal calves exposed to hypoxia were found to differentiate into endothelial and smooth muscle cell phenotypes depending on culture conditions. From these observations, we suggest that the vasa vasorum and circulating progenitor cells could be involved in vessel wall thickening in the setting of hypoxia-induced PH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号