首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human epidermal growth factor receptor 2 (HER2) is a powerful target for cancer immune therapy. The development of anti-HER2 monoclonal antibodies targeting different domains of HER2 is quite effective. However, the selection and production of multivalent antibodies are complicated. In this study, a mimivirus-based designed ankyrin repeat protein (DARPin) targeting HER2 was selected from an artificial library by bacteria surface display. The selection was performed on HER2-positive B16BL6/E2 melanoma cells and HER2-nagative cells. DARPin selected from the library could be expressed in soluble form with a yield of 70?mg/L. After purified by two continuous and easy steps, the purity of DARPin was 90% as established by SDS-PAGE and RP-HPLC. Selected DARPin showed significant HER2-targeting ability with an affinity of 1.05?±?0.47?µM. MTT assay demonstrated that at the concentration of 640?nM, the selected DARPin dimer could inhibit the SK-BR-3 growth at a rate of 36.63 and 46.34% in 48 and 72?hr incubation separately, which was similar to trastuzumab (43.12 and 49.14% separately). These findings suggested that it was an effective method to select antibody mimetic DARPin by bacteria surface display combined with live cells sorting and provided a drug candidate for cancer therapy.  相似文献   

2.
MBS301, a glyco-engineered bispecific anti-human epidermal growth factor receptor 2 (HER2) antibody with a typical IgG1 monoclonal antibody structure, was developed through dual-cell expression and in vitro assembling process. MBS301 consists of two half antibodies engineered from trastuzumab and pertuzumab, respectively. Integrity and purity profiles of MB301 indicated that the heterodimerization of the two half antibodies was successful. The high and similar melting temperatures (Tm1,72.0°C and Tm2, 84.8°C) of MBS301 compared with those of its parental monoclonal antibodies trastuzumab and pertuzumab (in-house made T-mab and P-mab, respectively) revealed its structural compactness. With computer-modeling experiments and Biacore binding and competition kinetics studies, the binding stoichiometry between MBS301 and HER2-ECD was determined to be 1:1 and the two arms of MBS301 were shown to bind to domains II and IV of HER2-ECD antigen simultaneously. MBS301 displayed synergistic bioactivities as the combination of T-mab and P-mab in vitro in multiple cancer cell lines and in vivo in xenograft mouse model studies, and showed more effective activity than T-mab or P-mab used individually. Moreover, fucose-knockout dramatically increased MBS301’s binding affinity to low affinity FcγRIIIa allotype 158F (KD = 2.35 × 10?7M) to near the high affinity level of allotype V158 (KD = 1.17 × 10?7M). This resulted in far more effective ADCC activity of MBS301 than the combination of T-mab and P-mab in killing HER2-positive cancer cells. Hence, a novel fully afucosylated anti-HER2 bispecific antibody with improved antitumor activities was generated and shown to have the potential to be used for treating HER2-positive but trastuzumab-resistant solid tumors.  相似文献   

3.
A designed ankyrin repeat protein evolved to picomolar affinity to Her2   总被引:4,自引:0,他引:4  
Designed ankyrin repeat proteins (DARPins) are a novel class of binding molecules, which can be selected to recognize specifically a wide variety of target proteins. DARPins were previously selected against human epidermal growth factor receptor 2 (Her2) with low nanomolar affinities. We describe here their affinity maturation by error-prone PCR and ribosome display yielding clones with zero to seven (average 2.5) amino acid substitutions in framework positions. The DARPin with highest affinity (90 pM) carried four mutations at framework positions, leading to a 3000-fold affinity increase compared to the consensus framework variant, mainly coming from a 500-fold increase of the on-rate. This DARPin was found to be highly sensitive in detecting Her2 in human carcinoma extracts. We have determined the crystal structure of this DARPin at 1.7 A, and found that a His to Tyr mutation at the framework position 52 alters the inter-repeat H-bonding pattern and causes a significant conformational change in the relative disposition of the repeat subdomains. These changes are thought to be the reason for the enhanced on-rate of the mutated DARPin. The DARPin not bearing the residue 52 mutation has an unusually slow on-rate, suggesting that binding occurred via conformational selection of a relatively rare state, which was stabilized by this His52Tyr mutation, increasing the on-rate again to typical values. An analysis of the structural location of the framework mutations suggests that randomization of some framework residues either by error-prone PCR or by design in a future library could increase affinities and the target binding spectrum.  相似文献   

4.
Ozone-inducible proteins (OI2-2 and OI14-3) from Atriplex canescens whose structure and function are unknown are rich in glycine intercepted with histidine and tyrosine with putative signal peptides at the N-terminus. OI2-2 and OI14-3 contain 8 and 10 tandem repeats of YGHGGG, respectively. In order to study whether these proteins bind Cu(2+), circular dichroism (CD), and nuclear magnetic resonance (NMR) were measured for four synthetic peptides corresponding to sections of the sequences of these proteins; 1 (HGGGY), 2 (HGGGYGH), 3 (YGHGGGY), and 4 (YGHGGGYGHGGGY), where all peptides were chemically blocked with an acetyl group at the N-terminus and an -NH(2) group at the C-terminus. Visible CD spectra of the four peptides show positive peaks near 580 and 340nm, which were observed at pH 7.4 but not pH 6.0, indicating clearly that the four peptides bind Cu(2+). The NMR spectra indicate that the addition of small amounts of CuSO(4) to 3 (Y1-G2-H3-G4-G5-G6-Y7) causes significant broadening of resonances of the side chain protons (C(beta)H, C(epsilon1)H, and C(delta2)H) of His3 and the side chain C(beta)H of Tyr1 at pH 7.4. In addition, the backbone C(alpha)H resonances of Gly2 and Gly4 were broadened more strongly than those of Gly5 and Gly6. CD titration experiment suggested that two repeats of YGHGGG comprise the fundamental Cu(2+) binding unit. Thus, the ozone-inducible proteins are capable of binding at least four or five copper ions per protein. These copper-binding proteins would function as active oxygen scavengers.  相似文献   

5.
6.
Targeted therapy using specific monoclonal antibodies (mAbs) conjugated to chemotherapeutic agents or toxins has become one of the top priorities in cancer therapy. Antibody–drug conjugates (ADCs) are emerging as a promising strategy for cancer-targeted therapy. In this study, trastuzumab, a humanized monoclonal anti-HER2 antibody, was reduced by dithiothreitol and conjugated to the microtubule-disrupting agent monomethyl auristatin E (MMAE) through a valine-citrulline peptide linker (trastuzumab-MC-Val-Cit-PABC-MMAE [trastuzumab-vcMMAE]). After conjugation, ADCs were characterized by using UV–vis, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and flow cytometry. The antitumor activity of the ADC was evaluated in breast cancer cells in vitro. In addition, ADCs were further characterized using purification by the protein A chromatography, followed by assessment using apoptosis and MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assays. Hydrophobic interaction chromatography was used to determine drug-to-antibody ratio species of ADCs produced. Our finding showed that approximately 5.12 drug molecules were conjugated to each mAb. H2L2, H2L, HL, H2, H, and L forms of ADCs were detected in nonreducing SDS-PAGE. The binding of trastuzumab-vcMMAE to HER2-positive cells was comparable with that of the parental mAb. The MTT assay showed that our ADCs induced significant cell death in HER2-positive cells, but not in HER2-negative cells. The ADCs produced was a mixture of species, unconjugated trastuzumab (14.147%), as well as trastuzumab conjugated with two (44.868%), four (16.886%), six (13.238%), and eight (10.861%) molecules of MMAE. These results indicated that MMAE-conjugated trastuzumab significantly increases the cytotoxic activity of trastuzumab, demonstrating high affinity, specificity, and antitumor activity in vitro. Trastuzumab-vcMMAE is an effective and selective agent for the treatment of HER2-positive breast tumors.  相似文献   

7.
Vascular endothelial growth factor (VEGF) B effects blood vessel formation by binding to VEGF receptor 1. To study the specifics of the biological profile of VEGF-B in both physiological and pathological angiogenesis, a neutralising anti-VEGF-B antibody (2H10) that functions by inhibiting the binding of VEGF-B to VEGF receptor 1 was developed. Here, we present the structural features of the ‘highly ordered’ interaction of the Fab fragment of this antibody (Fab-2H10) with VEGF-B. Two molecules of Fab-2H10 bind to symmetrical binding sites located at each pole of the VEGF-B homodimer, giving a unique U-shaped topology to the complex that has not been previously observed in the VEGF family. VEGF-B residues essential for binding to the antibody are contributed by both monomers of the cytokine. Our detailed analysis reveals that the neutralising effect of the antibody occurs by virtue of the steric hindrance of the receptor-binding interface. These findings suggest that functional complementarity between VEGF-B and 2H10 can be harnessed both in analysing the therapeutic potential of VEGF-B and as an antagonist of receptor activation.  相似文献   

8.
There is an ever-increasing demand to select specific, high-affinity binding molecules against targets of biomedical interest. The success of such selections depends strongly on the design and functional diversity of the library of binding molecules employed, and on the performance of the selection strategy. We recently developed SRP phage display that employs the cotranslational signal recognition particle (SRP) pathway for the translocation of proteins to the periplasm. This system allows efficient filamentous phage display of highly stable and fast-folding proteins, such as designed ankyrin repeat proteins (DARPins) that are virtually refractory to conventional phage display employing the post-translational Sec pathway. DARPins comprise a novel class of binding molecules suitable to complement or even replace antibodies in many biotechnological or biomedical applications. So far, all DARPins have been selected by ribosome display. Here, we harnessed SRP phage display to generate a phage DARPin library containing more than 1010 individual members. We were able to select well behaved and highly specific DARPins against a broad range of target proteins having affinities as low as 100 pM directly from this library, without affinity maturation. We describe efficient selection on the Fc domain of human IgG, TNFα, ErbB1 (EGFR), ErbB2 (HER2) and ErbB4 (HER4) as examples. Thus, SRP phage display makes filamentous phage display accessible for DARPins, allowing, for example, selection under harsh conditions or on whole cells. We envision that the use of SRP phage display will be beneficial for other libraries of stable and fast-folding proteins.  相似文献   

9.
10.
The concept of targeted therapy implies the development of bifunctional agents complementing the therapeutic module with a targeting one. A promising target for the delivery of imaging and/or toxic modules is the HER2 (ErbB2) receptor. Earlier, we have functionally characterized the targeted photosensitizers 4D5scFv–miniSOG and DARPin–miniSOG, causing the death of HER2-overexpressing cells when irradiated with blue light. However, the cytotoxicity of targeted toxins 4D5scFv–miniSOG and DARPin–miniSOG (both having functionally active targeted and cytotoxic modules in recombinant proteins) against human breast adenocarcinoma cells differs 5 times. The study of the dynamics of internalization of 4D5scFv–miniSOG and DARPin–miniSOG proteins in the complex with HER2 in this work showed that the rate of internalization contributes most significantly to the toxicity of these photosensitizers, because it determines the duration of the presence of the phototoxin in the lipid bilayer of the cell membrane, where its damaging effect is maximum.  相似文献   

11.
The limited size of the germline antibody repertoire has to recognize a far larger number of potential antigens. The ability of a single antibody to bind multiple ligands due to conformational flexibility in the antigen‐binding site can significantly enlarge the repertoire. Among the six complementarity determining regions (CDRs) that generally comprise the binding site, the CDR H3 loop is particularly variable. Computational protein design studies showed that predicted low energy sequences compatible with a given backbone structure often have considerable similarity to the corresponding native sequences of naturally occurring proteins, indicating that native protein sequences are close to optimal for their structures. Here, we take a step forward to determine whether conformational flexibility, believed to play a key functional role in germline antibodies, is also central in shaping their native sequence. In particular, we use a multi‐constraint computational design strategy, along with the Rosetta scoring function, to propose that the native sequences of CDR H3 loops from germline antibodies are nearly optimal for conformational flexibility. Moreover, we find that antibody maturation may lead to sequences with a higher degree of optimization for a single conformation, while disfavoring sequences that are intrinsically flexible. In addition, this computational strategy allows us to predict mutations in the CDR H3 loop to stabilize the antigen‐bound conformation, a computational mimic of affinity maturation, that may increase antigen binding affinity by preorganizing the antigen binding loop. In vivo affinity maturation data are consistent with our predictions. The method described here can be useful to design antibodies with higher selectivity and affinity by reducing conformational diversity. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
Biochemical evidence for a third chain of the interleukin-2 receptor   总被引:6,自引:0,他引:6  
Two receptor proteins that specifically bind interleukin-2 (IL-2) have been identified previously. The L (Tac or alpha) chain can bind IL-2 with a Kd value of 10 nM (low affinity). Although the H (beta) chain expressed on lymphocytes can bind IL-2 with a Kd value of 1 nM (intermediate affinity), transfected fibroblasts expressing the H chain cannot bind IL-2, suggesting the involvement of other lymphocyte-specific factors for the function of the H chain. To obtain direct evidence for the presence of a third component of the IL-2 receptor, we examined the IL-2 binding activity of detergent-solubilized cell membrane preparations. We found that lysates of transfected Cos7 cells expressing H chains can bind IL-2 when mixed with lysates from lymphocytes that cannot bind IL-2. Chemical cross-linking of 125I-IL-2-bound lysate mixture and subsequent immunoprecipitation with a noncompetitive anti-H chain antibody gave rise to two 125I-IL-2-bound proteins, a 56-kDa protein (p56) and the H chain, although neither the H chain nor p56 alone is able to bind IL-2. These results indicate that p56 is the IL-2 receptor third chain that is required for IL-2 binding to the H chain. A similar lysate mixing experiment also showed that p56 is involved in IL-2 binding to the high affinity IL-2 receptor by forming the quaternary complex of IL-2, p56, L chain, and H chain.  相似文献   

13.
14.
This is a preliminary cross multidisciplinary theoretical-computational approach for the design of a drug delivery system based on immunoconjugated carbon nanotube against HER2- overexpressing cancer cells. This drug delivery system allows the release of an encapsulated cytotoxic cocktail in a controlled manner under pulsed radio frequency (RF) irradiation. Our effort is focused on the computational aided design of a high affinity bispecific anti-HER2 antibody and an opening mechanism of the carbon nanotube (CNT) based cytotoxic carrier for controlling multiple drug release. We study the main interactions between the antibody and the antigen by a computational scanning mutagenesis approach of trastuzumab and pertuzumab fragment antigen binding (Fab) structures in order to enhance their binding affinity. Then, each Fab fragments is joined by a polypeptide linker which should be stable enough to avoid the “open form” of antibody. On the other hand, we also conjugate the engineered antibody to functionalized CNTs (f-CNTs), which encapsulate the inhibitors of the HER2/PI3K/Akt/mTOR signaling pathway. We take advantage of the fact that f-CNT converts the RF radiation absorption into heat release. A pulsed laser at 13.45 MHz increments the temperature around 40 °C for triggering the nano-caps destabilization, which allows the switching of the opening mechanism of the drug carrier. Nano-caps will be a dual pH/temperature responsive in order to take advantage of lysosome characteristic (acidic pH) and heat release from the carrier. Nano-caps are functionalized with organic amide moieties, which hydrolyze quickly at an acidic pH into primary amines, and protonated amines generate repulsion interactions with other charged species, which trigger the cytotoxics release.
Figure
Immunoconjugated-CNT drug delivery against HER2 receptor. (1) Design of a high affinity bispecific anti-HER2 antibody based on trastuzumab and pertuzumab Fabs; and (2) controllable multiple drug release of the CNT carrier (opening mechanism) under external stimuli  相似文献   

15.
16.
The germline precursor to the ferrochelatase antibody 7G12 was found to bind the polyether jeffamine in addition to its cognate hapten N-methylmesoporphyrin. A comparison of the X-ray crystal structures of the ligand-free germline Fab and its complex with either hapten or jeffamine reveals that the germline antibody undergoes significant conformational changes upon the binding of these two structurally distinct ligands, which lead to increased antibody-ligand complementarity. The five somatic mutations introduced during affinity maturation lead to enhanced binding affinity for hapten and a loss in affinity for jeffamine. Moreover, a comparison of the crystal structures of the germline and affinity-matured antibodies reveals that somatic mutations not only fix the optimal binding site conformation for the hapten, but also introduce interactions that interfere with the binding of non-hapten molecules. The structural plasticity of this germline antibody and the structural effects of the somatic mutations that result in enhanced affinity and specificity for hapten likely represent general mechanisms used by the immune response, and perhaps primitive proteins, to evolve high affinity, selective receptors for so many distinct chemical structures.  相似文献   

17.
We present the crystal structure and biochemical characterization of Escherichia coli YbiB, a member of the hitherto uncharacterized TrpD2 protein family. Our results demonstrate that the functional diversity of proteins with a common fold can be far greater than predictable by computational annotation. The TrpD2 proteins show high structural homology to anthranilate phosphoribosyltransferase (TrpD) and nucleoside phosphorylase class II enzymes but bind with high affinity (KD = 10–100 nm) to nucleic acids without detectable sequence specificity. The difference in affinity between single- and double-stranded DNA is minor. Results suggest that multiple YbiB molecules bind to one longer DNA molecule in a cooperative manner. The YbiB protein is a homodimer that, therefore, has two electropositive DNA binding grooves. But due to negative cooperativity within the dimer, only one groove binds DNA in in vitro experiments. A monomerized variant remains able to bind DNA with similar affinity, but the negative cooperative effect is eliminated. The ybiB gene forms an operon with the DNA helicase gene dinG and is under LexA control, being induced by DNA-damaging agents. Thus, speculatively, the TrpD2 proteins may be part of the LexA-controlled SOS response in bacteria.  相似文献   

18.
19.
The eight mammalian Cbx proteins are chromodomain-containing proteins involved in regulation of heterochromatin, gene expression, and developmental programs. They are evolutionarily related to the Drosophila HP1 (dHP1) and Pc (dPc) proteins that are key components of chromatin-associated complexes capable of recognizing repressive marks such as trimethylated Lys-9 and Lys-27, respectively, on histone H3. However, the binding specificity and function of the human homologs, Cbx1-8, remain unclear. To this end we employed structural, biophysical, and mutagenic approaches to characterize the molecular determinants of sequence contextual methyllysine binding to human Cbx1-8 proteins. Although all three human HP1 homologs (Cbx1, -3, -5) replicate the structural and binding features of their dHP counterparts, the five Pc homologs (Cbx2, -4, -6, -7, -8) bind with lower affinity to H3K9me3 or H3K27me3 peptides and are unable to distinguish between these two marks. Additionally, peptide permutation arrays revealed a greater sequence tolerance within the Pc family and suggest alternative nonhistone sequences as potential binding targets for this class of chromodomains. Our structures explain the divergence of peptide binding selectivity in the Pc subfamily and highlight previously unrecognized features of the chromodomain that influence binding and specificity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号