首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clostridium difficile toxin B (TcdB) is a key virulence factor of bacterium and induces intestinal inflammatory disease. Because of its potent cytotoxic and proinflammatory activities, we investigated the utility of TcdB in developing anti-tumor immunity. TcdB induced cell death in mouse colorectal cancer CT26 cells, and the intoxicated cells stimulated the activation of mouse bone marrow-derived dendritic cells and subsequent T cell activation in vitro. Immunization of BALB/c mice with toxin-treated CT26 cells elicited potent anti-tumor immunity that protected mice from a lethal challenge of the same tumor cells and rejected pre-injected tumors. The anti-tumor immunity generated was cell-mediated, long-term, and tumor-specific. Further experiments demonstrated that the intact cell bodies were important for the immunogenicity since lysing the toxin-treated tumor cells reduced their ability to induce antitumor immunity. Finally, we showed that TcdB is able to induce potent anti-tumor immunity in B16-F10 melanoma model. Taken together, these data demonstrate the utility of C. difficile toxin B for developing anti-tumor immunity.  相似文献   

2.
R Swett  GA Cisneros  AL Feig 《PloS one》2012,7(7):e41518
Clostridium difficile (C. difficile) is an opportunistic pathogen that can cause potentially lethal hospital-acquired infections. The cellular damage that it causes is the result of two large clostridial cytotoxins: TcdA and TcdB which act by glucosylating cytosolic G-proteins, mis-regulation of which induces apoptosis. TcdB is a large flexible protein that appears to undergo significant structural rearrangement upon accommodation of its substrates: UDP-glucose and a Rho-family GTPase. To characterize the conformational space of TcdB, we applied normal mode and hinge-region analysis, followed by long-timescale unbiased molecular dynamics. In order to examine the TcdB and RhoA interaction, macromolecular docking and simulation of the TcdB/RhoA complex was performed. Generalized Masked Delaunay analysis of the simulations determined the extent of significant motions. This combination of methods elucidated a wide range of motions within TcdB that are reiterated in both the low-cost normal mode analysis and the extensive MD simulation. Of particular interest are the coupled motions between a peripheral 4-helix bundle and a small loop in the active site that must rearrange to allow RhoA entry to the catalytic site. These extensive coupled motions are indicative of TcdB using a conformational capture mechanism for substrate accommodation.  相似文献   

3.
The mouse lethality test is the most sensitive method for confirming the diagnosis of infant botulism. Both Clostridium difficile and Clostridium botulinum produce heat-labile toxins which are lethal for mice and can be found in the feces of infants. These two toxins can be distinguished from one another in this assay when both are present in the same fecal specimen because they appear to be immunologically distinct toxins.  相似文献   

4.
Thirteen point mutations targeting predicted domains conserved in homologous protein kinases were introduced into the UL97 coding region of the human cytomegalovirus. All mutagenized proteins were expressed in cells infected with recombinant vaccinia viruses (rVV). Several mutations drastically reduced ganciclovir (GCV) phosphorylation. Mutations at amino acids G340, A442, L446, and F523 resulted in a complete loss of pUL97 phosphorylation, which was strictly associated with a loss of GCV phosphorylation. Our results confirm that in rVV-infected cells pUL97 phosphorylation is due to autophosphorylation and show that several amino acids conserved within domains of protein kinases are essential for this pUL97 phosphorylation. GCV phosphorylation is dependent on pUL97 phosphorylation.  相似文献   

5.
本文探讨了重组艰难梭菌毒素B(rTcd B)对小鼠结肠癌CT26细胞的诱导凋亡作用。采用不同浓度rTcd B处理CT26细胞, 通过MTT法检测细胞增殖抑制率; 比色法测定Caspase 3活性; 细胞形态学和流式细胞技术检测细胞凋亡。结果表明, rTcd B显著抑制了CT26细胞的增殖, 并呈时间?剂量依赖性; Caspase 3活性在处理6 h后显著升高, 至18 h达到最大值, 与对照组相比差异显著, 具有统计学意义(P<0.05); 荧光显微镜观察到典型细胞凋亡形态学变化, 细胞膜内侧的磷脂酰丝氨酸(PS)异位到了膜外侧, 细胞膜呈明亮的绿色荧光; 通过流式细胞仪检测结果表明, 细胞凋亡率呈时间?剂量依赖性增加。实验结果表明, 重组艰难梭菌毒素B能够诱导小鼠结肠癌CT26细胞凋亡。  相似文献   

6.
Abstract: The toxins produced by Clostridium difficile share several functional properties with other bacterial toxins, like the heat-labile enterotoxin of Escherichia coli and cholera toxin. However, functional and structural differences also exist. Like cholera toxin, their main target is the disruption of the microfilaments in the cell. However, since these effects are not reversible, as found with cholera toxin, additional mechanisms add to the cytotoxic potential of these toxins. Unlike most bacterial toxins, which are built from two structurally and functionally different small polypeptide chains, the functional and binding properties of the toxins of C. difficile are confined within one large polypeptide chain, making them the largest bacterial toxins known so far.  相似文献   

7.
酶联免疫吸附试验检测艰难梭菌A毒素   总被引:1,自引:0,他引:1  
实验用兔单特异抗艰难梭菌A毒素IgG包被酶标板,以羊抗艰难梭菌A毒素IgG标记辣根过氧化物酶作为第二抗体,采用双抗体夹心ELISA法检测艰难梭菌A毒素,可检测出0.94ng的精制A毒素,对61株菌的培养液及65份健康人粪便标本检测发现此法具有较高的特异性。用平行线定量法对几份典型产毒培养物进行了定量测定,结果表明,在一定剂量范围内线性及平行性好,结果准确、可靠。可用于临床粪便标本中艰难梭菌A毒素的筛查及定量检测。  相似文献   

8.
The action of Clostridium difficile toxins A and B depends on inactivation of host small G-proteins by glucosylation. Cellular inositol hexakisphosphate (InsP6) induces an autocatalytic cleavage of the toxins, releasing an N-terminal glucosyltransferase domain into the host cell cytosol. We have defined the cysteine protease domain (CPD) responsible for autoprocessing within toxin A (TcdA) and report the 1.6 Å x-ray crystal structure of the domain bound to InsP6. InsP6 is bound in a highly basic pocket that is separated from an unusual active site by a β-flap structure. Functional studies confirm an intramolecular mechanism of cleavage and highlight specific residues required for InsP6-induced TcdA processing. Analysis of the structural and functional data in the context of sequences from similar and diverse origins highlights a C-terminal extension and a π-cation interaction within the β-flap that appear to be unique among the large clostridial cytotoxins.Clostridium difficile is a Gram-positive, spore-forming anaerobe that infects the colon and causes a range of disorders, including diarrhea, pseudomembranous colitis, and toxic megacolon (1, 2). Two large toxins, TcdA2 and TcdB (308 and 270 kDa, respectively) are recognized as the main virulence factors of C. difficile, although their relative importance is the subject of on-going study (3, 4). These proteins belong to a class of homologous toxins called large clostridial toxins (LCTs) and have been classified more broadly as AB toxins, wherein a B moiety is involved in the delivery of an enzymatic A moiety into the cytosol of a target cell. In LCTs, the A subunit is an N-terminal glucosyltransferase that inactivates small G-proteins, such as Rho, leading to cell rounding and apoptosis of the intoxicated cell (5, 6). The B subunit corresponds to the remainder of the toxin and is responsible for binding the target cell through a C-terminal receptor-binding domain (79) and forming the membrane pore needed for translocation of the A subunit (10, 11). Unlike other known AB toxins, the glucosyltransferase A domains of LCTs are released from the B subunits by an autoproteolytic cleavage event (12). Cleavage is triggered by host inositol phosphates and the reducing environment of the cytosol (12).In LCTs, autoproteolysis has been attributed to a cysteine protease activity located within the N-terminal region of the B subunit (13). This region was identified based on homology with the cysteine protease domain (CPD) found in the multifunctional autoprocessing repeats in toxins (MARTX) toxins from Gram-negative bacteria (14). Autoprocessing in the MARTX toxin from Vibrio cholera (VcRTx) is also stimulated by InsP6 (15). A recent crystal structure of VcRTx CPD bound to InsP6 suggests a novel mechanism of InsP6-induced allosteric activation (16). The CPDs of TcdA and VcRTx share only 19% sequence identity. To gain insight into the mechanistic commonalities between these entirely different toxins and to delineate the LCT-specific modes of InsP6-induced processing, we performed structural and functional analyses on the cysteine protease from TcdA.  相似文献   

9.
Clostridium difficile Toxin B (TcdB) glucosylates low molecular weight GTP-binding proteins of the Rho subfamily and thereby causes actin re-organization (cell rounding). This "cytopathic effect" has been generally attributed to RhoA inactivation. Here we show that cells expressing non-glucosylatable Rac1-Q61L are protected from the cytopathic effect of TcdB. In contrast, cells expressing RhoA-Q63L or mock-transfected cells are fully susceptible for the cytopathic effect of TcdB. These findings are extended to the Rac1/RhoG mimic IpgB1 and the RhoA mimic IpgB2 from Shigella. Ectopic expression of IpgB1, but not IpgB2, counteracts the cytopathic effect of TcdB. These data strongly suggest that Rac1 rather than RhoA glucosylation is critical for the cytopathic effect of TcdB.  相似文献   

10.
Clostridium difficile is the major cause of infectious diarrhea and a major burden to health care services. The ability of this organism to form endospores plays a pivotal role in infection and disease transmission. Spores are highly resistant to many forms of disinfection and thus are able to persist on hospital surfaces and disseminate infection. In order to cause disease, the spores must germinate and the organism must grow vegetatively. Spore germination in Bacillus is well understood, and genes important for this process have recently been identified in Clostridium perfringens; however, little is known about C. difficile. Apparent homologues of the spore cortex lytic enzyme genes cwlJ and sleB (Bacillus subtilis) and sleC (C. perfringens) are present in the C. difficile genome, and we describe inactivation of these homologues in C. difficile 630Δerm and a B1/NAP1/027 clinical isolate. Spores of a sleC mutant were unable to form colonies when germination was induced with taurocholate, although decoated sleC spores formed the same number of heat-resistant colonies as the parental control, even in the absence of germinants. This suggests that sleC is absolutely required for conversion of spores to vegetative cells, in contrast to CD3563 (a cwlJ/sleB homologue), inactivation of which had no effect on germination and outgrowth of C. difficile spores under the same conditions. The B1/NAP1/027 strain R20291 was found to sporulate more slowly and produce fewer spores than 630Δerm. Furthermore, fewer R20291 spores germinated, indicating that there are differences in both sporulation and germination between these epidemic and nonepidemic C. difficile isolates.The Gram-positive anaerobe Clostridium difficile causes diarrheal diseases ranging from asymptomatic carriage to a fulminant, relapsing, and potentially fatal colitis (8, 30). This organism is resistant to various broad-spectrum antibiotics and capitalizes on disruption of the normal intestinal flora to colonize and cause disease symptoms through the action of toxins A and B (16, 40). While these toxins are the principal virulence factors, the ability of the organism to produce endospores is necessary for disease transmission.Clostridial spores are extremely resistant to all kinds of chemical and physical agents and provide the mechanism by which C. difficile can evade the potentially fatal consequences of exposure to heat, oxygen, alcohol, and certain disinfectants (35). Thus, the spores shed in fecal matter are very difficult to eradicate and can persist on contaminated surfaces in health care facilities for extended periods of time (35). This leads to infection or reinfection of cohabitating individuals through inadvertent ingestion of infected material (10, 32). Once in the anaerobic environment of the gut, spores presumably germinate to form toxin-producing vegetative cells and, in susceptible individuals, diarrheal disease.Spore germination is defined as the events that result in the irreversible loss of spore characteristics. However, current mechanistic knowledge of the germination process is based principally on data derived from studying Bacillus subtilis. Little is known about spore germination in clostridia and, in particular, in C. difficile. Germination is initiated when the bacterial spore senses specific effectors, termed germinants. These effectors can include nutrients, cationic surfactants, peptidoglycan, and a 1:1 chelate of pyridine-2,6-dicarboxylic acid (dipicolinic acid) and Ca2+ (CaDPA) (23, 34, 36). Spores of B. subtilis can germinate in response to nutrients through the participation of three sensory receptors located in the spore inner membrane, GerA, GerB, and GerK (23). After activation, the events include the release of monovalent cations (H+, K+, and Na+) and CaDPA (accounting for approximately 10% of the spore dry weight) (36). The third major step in germination involves hydrolysis of the spore peptidoglycan (PG) cortex. It is during this hydrolysis that the previously low water content of the spore is restored to the water content of a normal vegetative cell and the core is able to expand, which in turn allows enzyme activity, metabolism, and spore outgrowth (36).CwlJ and SleB are two specific spore cortex-lytic enzymes (SCLEs) involved in Bacillus cortex hydrolysis, which break down PG containing muramic-δ-lactam (28). SleB has been shown to localize in both the inner and outer layers of B. subtilis spores through interaction of the enzyme peptidoglycan-binding motif and the δ-lactam structure of the cortex (7, 19) and in association with YpeB, which is required for sleB expression during sporulation (4, 7). SleB is a lytic transglycosylase muramidase, but so far its mode of activation is unknown (21). CwlJ is localized to the spore coat during sporulation (3) and is required for CaDPA-induced germination in B. subtilis. Activation can be due to either CaDPA released from the spore core at the onset of germination or exogenous CaDPA (22). Neither enzyme is individually essential for complete cortex hydrolysis during nutrient germination, although inactivation of both cwlJ and sleB in B. subtilis results in a spore unable to complete this process (15). The role of SleL has recently been studied in Bacillus anthracis. Mutants unable to produce this enzyme are still able to germinate, but the process is retarded (18).The SCLEs of Clostridium are less well studied than those of Bacillus. The SCLEs SleC (20) and SleM (6) have been identified in Clostridium perfringens, and a recent study demonstrated that SleC is required during germination for complete cortex hydrolysis (26). Although SleM can degrade spore cortex peptidoglycan and inactivation of both sleC and sleM decreased the ability of spores to germinate more than inactivation of sleC alone did, SleM was not essential (26). It has also been shown that the germination-specific serine protease CspB is essential for cortex hydrolysis and converts the inactive pro-SleC found in dormant spores to an active enzyme (24). So far, there has been no detailed study of any gene responsible for spore germination in C. difficile, although genes showing homology to cwlJ and sleB of B. subtilis (CD3563) and sleC of C. perfringens (CD0551) have now been identified in the C. difficile 630 genome (33).With germinant receptors in C. difficile yet to be identified, the mechanism by which the spores sense a suitable environment for germination is unclear. Recent studies have suggested that this process may involve the interaction of C. difficile with bile. Taurocholate has been shown to enhance recovery of C. difficile spores in nutrient-rich medium (42), and it has been proposed that glycine and taurocholate act as cogerminants (38), while chenodeoxycholate inhibits C. difficile spore germination (39).The emergence of C. difficile B1/NAP1/027 strains has increased the burden on health care services worldwide. Such strains have been shown to produce higher levels of toxin in the laboratory than many other types of strains (41), although the mechanism behind this production is not fully understood. However, while the observed higher levels of toxin production is doubtless important, perhaps the recent attention given to B1/NAP1/027 strains has focused too much on toxins. As spores represent the infectious stage of C. difficile, processes such as spore germination may also contribute to the greater virulence of these strains. In this study we evaluated the sporulation and germination efficiencies of an “epidemic” B1/NAP1/027 C. difficile strain (R20291, isolated from the Stoke Mandeville outbreak in 2004 and 2005) and the “nonepidemic” strain 630Δerm (14). We then constructed strains with mutations in CD3563 (a cwlJ/sleB homologue) and a sleC homologue to analyze the role of these genes in the germination of C. difficile spores.  相似文献   

11.
12.
Toxin B is a member of the family of large clostridial cytotoxins which are of great medical importance. Its catalytic fragment was crystallized in the presence of UDP-glucose and Mn2+. The structure was determined at 2.2 A resolution, showing that toxin B belongs to the glycosyltransferase type A family. However, toxin B contains as many as 309 residues in addition to the common chainfold, which most likely contribute to the target specificity. A superposition with other glycosyltransferases shows the expected positions of the acceptor oxygen atom during glucosyl transfer and indicates further that the reaction proceeds probably along a single-displacement pathway. The C1' donor carbon atom position is defined by the bound UDP and glucose. It assigns the surface area of toxin B that forms the interface to the target protein during the modifying reaction. A docking attempt brought the known acceptor atom, Thr37 O(gamma1) of the switch I region of the RhoA:GDP target structure, near the expected position. The relative orientation of the two proteins was consistent with both being attached to a membrane. Sequence comparisons between toxin B variants revealed that the highest exchange rate occurs around the active center at the putative docking interface, presumably due to a continuous hit-and-evasion struggle between Clostridia and their eukaryotic hosts.  相似文献   

13.
14.
15.
Clostridium difficile is emerging worldwide as a major cause of nosocomial infections. The negatively charged PSII polysaccharide has been found in different strains of C. difficile and, thereby, represents an important target molecule for a possible carbohydrate-based vaccine. In order to identify a synthetic fragment that after conjugation to a protein carrier could be able to induce anti-PSII antibodies, we exploited a combination of chemical synthesis with immunochemistry, confocal immunofluorescence microscopy, and solid state NMR. We demonstrate that the phosphate group is crucial in synthetic glycans to mimic the native PSII polysaccharide; both native PSII and a phosphorylated synthetic hexasaccharide repeating unit conjugated to CRM(197) elicit comparable immunogenic responses in mice. This finding can aid design and selection of carbohydrate antigens to be explored as vaccine candidates.  相似文献   

16.
Clostridium difficile toxin B (269 kDa) is one of the causative agents of antibiotic-associated diarrhea and pseudomembranous colitis. Toxin B acts in the cytosol of eukaryotic target cells where it inactivates Rho GTPases by monoglucosylation. The catalytic domain of toxin B is located at the N terminus (amino acid residues 1-546). The C-terminal and the middle region of the toxin seem to be involved in receptor binding and translocation. Here we studied whether the full-length toxin or only a part of the holotoxin is translocated into the cytosol. Vero cells were treated with recombinant glutathione S-transferase-toxin B, and thereafter, toxin B fragments were isolated by affinity precipitation of the glutathione S-transferase-tagged protein from the cytosolic fraction of intoxicated cells. The toxin fragment (approximately 65 kDa) was recognized by an antibody against the N terminus of toxin B and was identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis as the catalytic domain of toxin B. The toxin fragment located in the cytosol possessed glucosyltransferase activity that could modify RhoA in vitro, but it was not able to intoxicate intact cells. After treatment of Vero cells with a radiolabeled fragment of toxin B (amino acid residues 547-2366), radioactivity was identified in the membrane fraction of Vero cells but not in the cytosolic fraction of Vero cells. Furthermore, analysis of cells by fluorescence microscopy revealed that the C terminus of toxin B was located in endosomes, whereas the N terminus was detected in the cytosol. Protease inhibitors, which were added to the cell medium, delayed intoxication of cells by toxin B and pH-dependent translocation of the toxin from the cell surface across the cell membrane. The data indicate that toxin B is proteolytically processed during its cellular uptake process.  相似文献   

17.
18.
Comparative sequence analysis of the Clostridium difficile toxins A and B.   总被引:16,自引:0,他引:16  
Summary The six clones pTB112, pTB324, pTBs12, pCd122, pCd14 and pCdl3 cover thetox locus ofClostridium difficile VPI 10463. This region of 19 kb of chromosomal DNA contains four open reading frames including the completetoxB andtoxA genes. The two toxins show 63% amino acid (aa) homology, a relatedness that had been predicted by the cross-reactivity of some monoclonal antibodies (mAb) but that is in contrast to the toxin specificity of polyclonal antisera. A special feature of ToxA and ToxB is their repetitive C-termini. We define herein 19 individual CROPS (combinedrepetitiveoligopeptides of 20–50 as length) in the ToxB C-terminus, which are separable into five homologous groups. Comparison of the as sequences of the N-terminal two-thirds of ToxA and ToxB revealed three marked structures, a cluster of 172 hydrophobic, highly conserved as in the centre of both toxins, a sequence of 120 residues with an accumulation of highly conserved arginine, cysteine, histidine, methionine, and tryptophan residues, and a stretch of 248 less conserved aa. The probable function of these domains is discussed. Structural and functional homologies of ToxA and ToxB indicate that both genes have a common ancestor and may have evolved by gene duplication, with subsequent recombination and mutation, as has been reported for streptococcal glucosyltransferases (Gtf).  相似文献   

19.
Clostridium difficile is a spore-forming anaerobic pathogen, commonly associated with severe diarrhea or life-threatening pseudomembraneous colitis. Its main virulence factors are the single-chain, multi-domain toxin A (TcdA) and B (TcdB). Their glucosyltransferase domain selectively inactivates Rho proteins leading to a reorganization of the cytoskeleton. To study exclusively glucosyltransferase-dependent molecular effects of TcdA, human colonic cells (Caco-2) were treated with recombinant wild type TcdA and the glucosyltransferase deficient variant of the toxin, TcdA(gd) for 24h. Changes in the protein pattern of the colonic cells were investigated by 2-D DIGE and LCMS/MS methodology combined with detailed proteome mapping. gdTcdA did not induce any detectable significant changes in the protein pattern. Comparing TcdA-treated cells with a control group revealed seven spots of higher and two of lower intensity (p<0.05). Three proteins are involved in the assembly of the cytoskeleton (β-actin, ezrin, and DPYL2) and four are involved in metabolism and/or oxidative stress response (ubiquitin, DHE3, MCCB, FABPL) and two in regulatory processes (FUBP1, AL1A1). These findings correlate well to known effects of TcdA like the reorganization of the cytoskeleton and stress the importance of Rho protein glucosylation for the pathogenic effects of TcdA.  相似文献   

20.
ADP-ribosylation is one of the favored modes of cell intoxication employed by several bacteria. Clostridium difficile is recognized to be an important nosocomial pathogen associated with considerable morbidity and attributable mortality. Along with its two well known toxins, Toxin A and Toxin B, it produces an ADP-ribosylating toxin that targets monomeric actin of the target cell. Like other Clostridial actin ADP-ribosylating toxins, this binary toxin, known as C. difficile toxin (CDT), is composed of two subunits, CDTa and CDTb. In this study, we present high resolution crystal structures of CDTa in its native form (at pH 4.0, 8.5, and 9.0) and in complex with ADP-ribose donors, NAD and NADPH (at pH 9.0). The crystal structures of the native protein show “pronounced conformational flexibility” confined to the active site region of the protein and “enhanced” disorder at low pH, whereas the complex structures highlight significant differences in “ligand specificity” compared with the enzymatic subunit of a close homologue, Clostridium perfringens iota toxin. Specifically in CDTa, two of the suggested catalytically important residues (Glu-385 and Glu-387) seem to play no role or a less important role in ligand binding. These structural data provide the first detailed information on protein-donor substrate complex stabilization in CDTa, which may have implications in understanding CDT recognition.Clostridium difficile infection is a major problem as a healthcare-associated infection. The bacterium causes nosocomial, antibiotic-associated diarrhea and pseudomembranous colitis in patients treated with broad spectrum antibiotics (13). Elderly patients are most at risk from these potentially life-threatening diseases, and incidents of hospital infection have increased dramatically over the last 10 years.Strains of C. difficile produce a variety of virulence factors, notable among which are several protein toxins: Toxin A, Toxin B (46), and, in some strains, the binary toxin CDT,3 which is similar to Clostridium perfringens iota toxin and Clostridium botulinum C2 toxin (79). Toxins A and B are large protein cytotoxins that play a key role in the pathology of infection and most probably are involved in the gut colonization process. Outbreaks of C. difficile infection have been reported with Toxin A-negative/Toxin B-positive strains, and a recent report (10) suggests that Toxin B plays a major role in the disease pathology. Little is presently known about the contribution of the binary toxin to C. difficile infection.CDT binary toxin belongs to the family of actin-specific ADP-ribosylating toxin (ADPRT) (for a recent review see Ref. 11), composed of two independently produced components: a transport component of 99 kDa (CDTb) that facilitates translocation of the enzymatic component of 49 kDa (CDTa) into the target cell that is capable of transferring ADP-ribose group of NAD/NADPH to monomeric actin molecules in target cells (9, 12, 13). This irreversible modification of G-actin at Arg-177 (8, 14) blocks its polymerization and thus formation of the polymeric F-actin, which results in disruption of crucial F-actin-G-actin equilibrium in the cell. This leads to a collapse of cell cytoskeleton and subsequently results in excessive fluid loss from the cell (15), rounding of the cell (16), increased vascular permeability (17), and finally cell death.Little is known about CDT structure, cellular receptor, and mechanism of cell entry. To provide a structural basis of the understanding of CDT function, we have embarked on the structural analysis of CDT components. Such information would be invaluable for the rational design of therapeutic strategies. As a first step, we have determined high resolution crystal structures of recombinant CDTa in native form (at different pH states, named CDTa-4.0, -8.5, and -9.0) as well as in complex with ADP-ribose donors NAD and NADPH (at pH 9.0). For comparison purposes we make use of native CDTa structure at pH 9.0 (CDTa-9.0). Here we report the detailed molecular interactions underlying the mode of recognition of its substrate and the conformational flexibility exhibited by CDTa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号